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1. Introduction and objective

1.1. State of research

Stem cells and their therapeutic applications. Tissue stem cells are found
in all multi-cellular organisms that retain the ability to renew themselves through
mitotic cell division. In order to maintain or reconstitute a particular tissue these
cells can specialize into a wide range of mature cell types through a process of dif-
ferentiation and lineage specification. Given the developmental potential of stem
cells, it is not surprising that the interest in their therapeutical use is continuously
growing.
A distinction between tissue stem cells and embryonic stem cells is appropriate

in the first place. Tissue stem cells, which are also called adult or somatic stem
cells, are typically found within a particular tissue or organ. There, the tissue
stem cells guarantee the sustained function of the tissue by the maintenance of
their own population and by the generation of the specialized cell types of the
tissue which are needed for replacement and repair [1, 2]. Generally, their dif-
ferentiation potential is narrowed to the cell types of the particular tissue. In
contrast, embryonic stem cells are derived from the cells of the inner cell mass of a
blastocyst and are maintained in in vitro cultures [3, 4, 5]. These cells are defined
by their ability to differentiate into all cell types of the organism. However, they
represent a fixation of a transient cell stage (corresponding to the cells of the inner
cell mass of the blastocyst) and therefore do not have a stable in vivo counterpart.
Although embryonic stem cells have a superior differentiation potential compared
to tissue stem cells, their application for medical therapy imposes a number of
technical problems and ethical questions which are more extensively discussed in
Section 2.6 of this thesis.
A complete new perspective in experimental stem cell research was recently

opened by the observation that somatic cells can be reprogrammed to a state
closely similar to embryonic stem cells [6, 7, 8, 9] thus circumventing nuclear trans-
fer techniques. Although the approaches are based on the targeted overexpression
of a set of relevant genes using gene vectors, the results gained great attention.
In the very first place, these results showed that a reprogramming of a complete
somatic cell is in principle possible. Additionally, these techniques do not require
the utilization of human egg cells and the generated cells are of the same genotype
as the donor ones. These advantages, to circumvent the ethical discussion using
embryonic stem cells or human eggs as well as the identity with the genotype of
the donor, put again highest expectations on stem cell research. Potential ap-
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1. Introduction and objective

plications in the clinical setting depend very much on the understanding of the
underlying process to successfully tune the reprogramming and the subsequent
differentiation.
So far, only tissue stem cells are successfully used for medical treatment or are

at least studied in the clinical situation. The most prominent example is the use
of hematopoietic stem cells (HSCs) for the treatment of severe malignancies of the
blood generating system. As in most leukemias normal hematopoiesis is displaced
by a rapidly expanding clone of malignant cells with impaired function. Current
transplantation treatments aim on an eradication of the complete hematopoietic
system of the effected patient and the subsequent replacement of the HSC source
provided from a healthy donor. Given the successful engraftment of the donor
stem cells in the bone marrow of the host they can completely reconstitute the
hematopoietic system and provide all types blood cells as there are lymphocytes,
erythrocytes and granulocytes. However, there is still a number of uncertainties
with stem cell transplantation, e.g. concerning the chances of donor engraftment
and the risk of immunoreactions between host and donor tissue.
Further feasible applications of stem cells include the use of epidermal stem cells

and the resulting keratinocytes in a wide spectrum of different techniques for the
tissue-engineering of artificial skin (see [10] and references therein). Such cultured
skin substitutes are regularly used for burn-injured patients and for the treatment
of chronical wounds. By reducing the demand for autologous skin transplants the
cultured skin substitutes have significantly enhanced the survival rates for major
burns and reduced the efforts for skin biopsies in patients with chronic wounds.
Novel therapeutic approaches have identified tissue stem cells as possible targets

for the insertion of genes which are corrupted or deficient in patients suffering
from severe genetic, often inheritable malignancies. This approach, commonly
called gene therapy, was successfully applied for the treatment of Severe Combined
Immunodeficiency Disorder (SCID) [11], a further subform called X-SCID [12]
and for the treatment of Chronic Granulomatous Disease (CGD) [13]. These
studies showed that the integration of the missing or corrupted gene in HSCs using
viral vectors can contribute to the corrected tissue function over extended time
periods. However, since the integration site of the corrected gene is random, the
transfected cell sample might contain cells in which other functions are corrupted
and potentially induce tumors. Such effects have to account for a number of
secondary hematopoietic malignancies with lethal consequences [14] and are the
greatest limitation to the present application of gene therapy.

Current limitations and novel concepts. The limited number of available
medical applications is a clear indicator that many questions about general princi-
ples of stem cell organization, culturing and differentiation are not fully answered.
Even from the perspective of basic research many details about the intrinsic reg-
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ulation of stem cells, their interactions with the local environment, their differen-
tiation decisions and even their identification are still unknown.
The limitations in the understanding of basic principles became even more ob-

vious when the classical view on tissue stem cells was challenged by experimental
observations demonstrating the ability of such cells to contribute to functional cell
types of completely different tissues. It has for example been shown that HSCs
have the general ability to differentiate into heart tissue ([15], see also the critical
discussion in [16]), liver [17], brain [18, 19] and muscle [20, 21]. This phenomenon,
generally referred to as plasticity, has again increased the interest in tissue stem
cells since it offers an alternative approach to circumvent the ethically question-
able use of embryonic stem cells. Even more important, these findings challenge
to whole concept of perceiving tissue stem cells as a rather fixed and homogeneous
population of cells with well defined characteristics and predetermined differen-
tiation potential. It appears that these stem cells are much more flexible than
previously anticipated and that they are generally able to respond to changing
environmental conditions.
This is not only true for the unexpected plasticity of these cells to switch be-

tween tissue, but also for their population-inherent heterogeneity. It could be
shown that stem cell populations are rather heterogeneous with respect to the
cycling status or with respect to the expression of surface markers [22, 23]. It is
therefore not surprising, that a prospective identification of a HSC could not be
accomplished so far. Even the most rigorous isolation protocols based on the ex-
pression of characteristic surface markers result in heterogeneous populations that
are enriched for HSCs but in which a significant number of cells fail to demonstrate
long-term reconstitution of a depleted animal [24]. For the prospective identifica-
tion of stem cells this isolation strategy might not be the ultimate tool since the
flexible and reversible expression of the surface markers as well as their limited
functional correlation to the stem cell activity are principle objections. But also
on the underlying genetic level it is not yet clear whether there exist a unique stem
cell signature or not [25]. Even more, it might be just the defining characteristic
of stem cells to not express a strict pattern uniquely encoding pluripotency and
the potential for sustained self-renewal. It seems much more plausible that the
stem cell state is characterized by different facets of flexibility, reversibility and
robustness, and that this state is highly dependent on the environmental condi-
tions, defined by the tissue, the signaling context and the metabolic options. In
this sense “stemness” is not a specific cellular property but rather an inherent
function of a particular heterogeneous cell population.
In the same line of argument it is questionable whether the process of lineage

specification, which describes the transition of originally undifferentiated (stem)
cells into functional mature cell types, is a predetermined sequence of decision
steps or whether lineage specification needs to be understood as a flexible and
adaptive process that is only predictable on the population level. As early as
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in the 1980s, Ogawa and coworkers [26, 27, 28] studied the lineage specification
potential of hematopoietic progenitor cells and concluded that committed cells
are derived from multipotent progenitors through a progressive restriction of lin-
eage potential, in which the restriction in type and number of lineages occurs
in a stochastic fashion. Although many details on the molecular mechanisms of
lineage specification have been elucidated since then it remains unclear how the
specific gene expression dynamics are generated and how they are controlled by
cell-cell and cell-environment interactions. Even on a more general level it is not
well understood how processes like adhesion, migration and apoptosis influence
the cell fate development. However, there is an increasing number of reports that
agree upon a general phenomenology of the lineage specification process: whereas
the undifferentiated state is characterized by a low level coexpression of many
lineage specific and potentially antagonistic genes in early progenitor cells, this
coexpression, commonly referred to as priming, disappears in the course of differ-
entiation, when certain lineage restricted genes are up-regulated while others are
down-regulated [29, 30, 31, 32].

Theoretical approaches in stem cell biology. The above criticism is not
in place to discredit more than 40 years of successful research on stem cells. It
is the motivation to study stem cell organization in a comprehensive, conceptual
fashion in which different and diverse phenomena can be uniquely represented
and linked to each other. It is evident, that every experimental design requires
at least a conceptual perception of the underlying biological processes in order
to either embed the results in the existing framework or to modify or even fal-
sify the existing model. Prominent examples of such conceptual models are the
hierarchy of hematopoietic cell differentiation or the interaction maps that out-
line the interplay of genes and transcription factors. However, beyond the level
of conceptual models is the level of mathematical validation which represents a
more rigorous description of the conceptual framework in terms of quantitatively
accessible measures and predictions.

There is little argument that stem cell organization is a complex regulation
process emerging from the collective interaction of a multitude of components.
However, complexity is not just a “game of many players” that need to be identi-
fied. One could even argue that the identification of the players has nothing to do
with complexity at all but it is the interactions, i.e. “the rules of the game”, that
make up complexity. In this case, it is not sufficient to analyze rather isolated
components or pathways since the organizational principles only appear in the
context of many interaction partners. This perception leads to an understanding
in which determinism is replaced by the notion of dynamically stabilized systems.
It is here that the plasticity and reversibility of cellular features that are con-
trolled by interactions with the environment guarantee for a robust and adaptive
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organization. Such systems are generally referred to as self-organizing.
The small number of quantitative modeling approaches in the field of stem cell

biology does not compare to the importance of this research field. Besides the
obstacles in identification and measurement of this rare cell class, many models
are rather descriptive in nature and stick to the traditional categories of stem cell
organization as a deterministic process. However, there is also few quantitative
models that apply the idea of complex interacting systems to the stem cell field
and that contributed to the development of novel conceptual ideas about stem cell
organization [1, 33, 34]. Within such models it is possible to consistently describe
a wide range of experimental findings and to couple them to a perspective which
perceives stem cell organization as an adaptive and flexible process.

New challenges in stem cell research. Within the last years the systems
biological advances made the field of stem cell biology more attractive for novel
theoretical approaches. Especially the availability of vast amounts of molecular
data such as mRNA and protein screens as well as the rapid increase of compu-
tational resources fostered the development of many new analytical methods for
data mining and representation. Driven by the experimental research many such
approaches aim at the identification of molecular key players that influence stem
cell development and organization. Translating these findings from the molecular
level to the phenotypic level is still a major challenge.
Apart from the molecular data, the availability of new monitoring techniques

such as high-resolution time lapse video microscopy facilitates the observation of
cell cultures over time. Analyzing the development of individual stem cells and
their progeny within such cultures yields information about the divisional history,
the timing of differentiation events like asymmetric cell fates and the role of cellu-
lar interactions. Regarding each cellular trajectory as a possible realization of the
developmental potential of the original (stem) cell, a multitude of such trajectories
should provide an impression about the diversity of possible developments. Such
approaches are suited to couple observed phenomena on the population level to
the relevant processes on the cellular level. However, the interpretation and gen-
eralization of such cellular trajectories requires a rigorous analytical foundation,
which is in many parts still lacking.
Model approaches in stem cell biology are important tools to connect cell in-

trinsic regulations like signaling pathways and gene expression patterns on one
side with the population behavior on the other side. The scope of such models
aims at the identification of general principles that define the appearance of the
tissue, e.g the regulatory principles leading to self-maintenance of the stem cell
population, the system inherent heterogeneity or the mechanisms that govern the
differentiation process into different types of functional cells. Given the necessary
simplifications from the rather complex biological system, these models are in-
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adequate for the understanding of molecular details. However, such abstractions
are often key to understanding the fundamental properties of such complex sys-
tems and allow to put different experimentally observed phenomena in a common
conceptual and quantitatively accessible context. This helps to identify common
regulatory principles, and therefore in the design of future experimental strategies.

1.2. Motivation

Phenomenology. Undifferentiated stem cells are defined by their ability to dif-
ferentiate into distinct somatic cell types. For the hematopoietic system, HSCs
can generally contribute to red and different types of white blood cells. This dif-
ferentiation process, generally involving a sequence of decision steps, is referred to
as lineage specification and is characterized by a number of biologically relevant
features:

• Loss of lineage potential. In a seminal series of experiments in the 1980s,
Ogawa and coworkers [26, 27, 28, 35] studied the lineage specification poten-
tial of hematopoietic stem and progenitor cells. It could be demonstrated
that the potential for the contribution to multiple lineages (multipotency)
is progressively lost while the cells undergo differentiation. This lead to the
conclusion that lineage specification is characterized as a progressive restric-
tion of lineage potential until a distinct mature cell fate is finally realized.

• Generation of diversity. Analyzing single cell-derived colonies in a num-
ber of closely similar studies [26, 27, 36] it could be furthermore shown that
originally undifferentiated cells can give rise to heterogeneous colonies con-
taining multiple different cell types. Together with the above mentioned
loss of multi-lineage potential this generation of diversity is commonly as-
sociated with a “hierarchy of stem cell differentiation”. In this conceptual
picture the stem cell at the origin gives rise to all lineage restricted progen-
itors and mature cells in a hierarchic sequence of decision steps (compare
Figure 2.2).

• Regulation of lineage specification. Lineage specification is not a static
process but can be regulated both in vivo and in vitro. Common examples
include the adaptation to higher demands of erythrocytes in high-altitude
conditions [37] or the targeted differentiation of primary cells and cell lines
in vitro (see e.g. [38, 39]).

• Temporal extension. The process of lineage specification has a temporal
extension. As illustrated e.g. in [39, 40] the proportion of undifferentiated
cells decreases continuously as a function of time while the proportions of
functional cells increases over the same period.
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• Reversibility. Generally it appears that reversibility plays a minor role
under homeostatic conditions but might be essential in cases of injury and
repair. Experimental evidence suggests that lineage specification is at least
a partially reversible process [22, 41, 42].

• Priming. On the molecular level, the undifferentiated state is characterized
by a coexpression of many, potentially antagonistic genes and transcription
factors [29, 31, 43]. This low-level coexpression, commonly referred to as
priming, disappears in the course of differentiation when certain lineage-
restricted genes are up-regulated while others are down-regulated.

• Lineage bias. Experimental evidence suggests that HSCs can maintain an
inheritable lineage bias in the sense that they preferentially contribute to
one cell type as compared to another [44, 45]. The mechanisms introducing
this additional level of heterogeneity among multipotent stem and progenitor
cells are still speculative.

For further details of the discussed phenomena the reader is referred to Chapter
2 of this work.

Conceptual approach. Besides their ability to provide a multitude of distinct
functional cell types for replacement and repair, stem cells are furthermore char-
acterized by their ability to preserve the regenerative potential of a tissue by
sustained maintenance of their stem cell population. To guarantee both these
functions certain mechanisms are required that on one hand regulate the self-
maintenance of the stem cell population, even under changing demands, and on
the other hand generate a stable, although tunable, composition of different func-
tionally differentiated cells.
Adopting a critical and unprejudiced view on stem cell organization it seems

obvious to ask whether such a system can be envisioned in the context of self-
organization and reactive adaptiveness, in which stemness is not a cellular prop-
erty of single cells but a systemic feature. Approaching this subject from the
perspective of a theoretical biologist, these questions have to be addressed in a
well defined and mathematically founded fashion. On this level it needs to be asked
which general types of rules are required to establish a self-organizing system sat-
isfying the experimentally imposed criteria. In turn, these general principles have
implications for the interpretation of the system behavior and even more direct
impact on measurable experimental outcomes.
For the mathematical description of the sustained maintenance of the stem cell

population, an elegant approach has been advocated by Ingo Roeder and Markus
Loeffler [33, 46, 47]. This approach, which is established for the well studied
hematopoietic system, is build on the idea that each cells is subject to different
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environmental signals which in turn induce different directions for the develop-
ments of these cells. For a simplified system with just two opposing signaling
contexts, one inducing differentiation and loss of stem cell function, the other
inducing self-maintenance and regeneration, it could be shown that the major
experimental results can be reproduced as there are the sustained maintenance
of the HSC population, the dynamic response to system depletion, the hetero-
geneity of the stem cell population and the establishment of cellular chimerisms.
A detailed account of the model is given in Section 3.4. However, the model by
Roeder and Loeffler does not account for the second functionality of tissue stem
cells: the sustained, although adaptive supply of different types of mature cells
for maintenance and repair of the functional tissue.

1.3. Objective

It is the objective of this work to establish a theoretical model which accurately
represents the phenomenology of stem cell differentiation and lineage specification
and to study its implications on the interpretation of cellular behavior both on
the single cell as well as on the population level. In particular, the following issues
are addressed in this thesis:

• A generalized analytical framework has to be developed to understand lin-
eage specification as an intracellular, temporally extended process based
on the interaction of competitive “differentiation programs”. This concept
needs to be discussed on the basis of a generalized understanding of the
molecular process involved in lineage specification of HSCs.

• The proposed intracellular lineage specification dynamics have to be embed-
ded in the model for HSC organization proposed by Roeder and Loeffler [33].
To do so, the interpretation of an instructive microenvironment has to be
extended to the situation of lineage specification, thus inducing a correlation
between the regulation of self-renewal and lineage specification.

• The intracellular model of lineage specification needs to represent different
possible mechanisms for the regulation of lineage contribution (i.e. instruc-
tive and selective lineage specification).

• To verify the proposed theoretical model, the simulation results need to be
compared to several sets of experimental data covering different aspects of
the lineage specification process.

In the second part of the thesis the extended model approach is applied to the
tracing of individual cell fates including the cell’s complete progeny. Therefore,
the following aspects have to be covered:
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• Establishment of a topological characterization for the tree-like structures
resulting from the single cell-based approach. This needs to be supplemented
by the proposition of suitable measures for their analysis and comparison.

• The application of these measures and their robustness needs to be demon-
strated under different (artificial) conditions. In particular, it has to be
addressed how different modes of lineage specification can be inferred from
the single cell tracking data.

The thesis is structured as follows. Chapter 2 provides a broad overview of the
experimental notion of stem cells and illustrates in more detail the phenomenology
of lineage specification. Chapter 3 continues with an introduction to the relevant
conceptual and mathematical models. Based on a catalogue of criteria a theoret-
ical concept of lineage specification is proposed in Chapter 4 and complemented
by a sensitivity analysis and a comparison with experimental data in Chapter 5.
Extending the focus towards the analysis of single cell fates Chapter 6 introduces
the relevant nomenclature and proposes appropriate measures. Chapter 7 analy-
ses the suitability of these measures for different in silico situations. The thesis is
concluded with a comprehensive summary and outlook in Chapter 8.
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2. Biological background: Stem cells and lineage
specification

2.1. Stem cells: history and definitions

It was as early as in 1868 that the biologist Ernst Haeckel used the term “Stamm-
zelle” (german for stem cell) to refer to the unicellular ancestor from which multi-
cellular organisms developed during evolution. By mapping such an evolutionary
“Stammbaum” (german for pedigree or family tree) onto an embryological tree
he advocated the view that the founding fertilized egg can also be called “stem
cell”. It was around the turn of that century that the term “stem cell” was also
used to identify a common progenitor cell that gives rise to different cell types of
the peripheral blood. However, the notion of one common type of stem cell that
regenerates the complete hematopoietic system remained controversial. It was
not until the early 1960s that Canadian scientists around Ernest McCulloch and
James Till could prove the existence of a common undifferentiated hematopoietic
(stem) cell that is capable of self-renewal and differentiation. In a series of ex-
periments it could be shown that single, undifferentiated bone marrow cells yield
the potential to developed into spleen colonies of irradiated mice [48, 49, 50]. An
excellent review about the historical usage of the term “stem cell” was published
recently by Ramalho-Santos and Willenbring [51].

After the landmark experiments by Till and McCulloch modern stem cell re-
search took up speed. Using transplantations experiments a whole body of knowl-
edge about the repopulation potential of certain bone marrow derived cells, their
differentiation hierarchy as well as their contribution to multiple hematopoietic
lineages has been established. Beyond the hematopoietic system, somatic stem
cells could also be identified in other tissues, e.g. in the skin [52], gut [53], liver
[54], neural tissue [55]. The apparent proximity between the processes of somatic
stem cell differentiation and differentiation during embryonic development estab-
lished the research on early embryonic cells as an additional branch of stem cell
research. After the first stable embryonic stem cell line has be derived from the
inner cell mass of a mouse embryo in 1981 [3, 4], this research quickly expanded,
resulting in the first human embryonic stem cell line derived in 1997 [56]. In
contrast to tissue stem cells, embryonic stem cells are defined in vitro and are
characterized by their ability to self-renew in culture and to contribute to all tis-
sues of the three primary germ layers, ectoderm, endoderm and mesoderm. In
2006, Shinya Yamanaka and colleagues showed the possibility to reprogram tissue
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2. Biological background: Stem cells and lineage specification

cells into an embryonic stem cell-like state by targeted overexpression of four spe-
cific transcription factors Sox-2, Oct-4, c-Myc, and Klf4 [6, 8]. The availability
of these so called induced pluripotent stem (iPS) cells opened a completely new
perspective for stem cell research and its applications in the 21nd century.
These recent advances are also based on the rapid biotechnical developments

in the last decades that opened the window for the understanding of molecular
processes in stem and progenitor cells. Using these techniques it was possible to
identify many important genes that are required for stem cell maintenance and
differentiation as well as their regulation by transcription factors and signaling
pathways. Especially the availability of microarrays, that could identify the whole
range of mRNAs transcribed within a certain cell population, raised the hope for
a unique “transcriptional signature” of stem cells [57, 58]. However, such a unique
signature could not be obtained so far [25], and it is questionable whether such an
stable signature exists or if the stem cell state is dynamically defined [59]. Simi-
larly, much effort has been made to prospectively isolate stem cells based on the
expression of certain surface antigens. But also these techniques only enrich for
stem cells and it is not yet possible to prospectively decide whether a particular
cell will act as a stem cell in a functional assay or not. Therefore, the “gold stan-
dard” for defining a stem cell is a functional characterization evaluating the cell’s
ability for long-term tissue regeneration in vivo.

There is an abundance of definitions that commonly characterize stem cells
by their ability to maintain their own population (self-maintenance) as well as
their ability to contribute to different types of functional cells (multipotency).
However, such working definitions do mostly not account for the full spectrum
of phenomena associated with stem cells nor do they clearly outline whether the
assigned features apply to isolated cells or to a cell population. Potten and Loeffler
[1], as well as other scientists [60, 61] illustrated that stem cell function needs to be
understood as a concerted action of many different cells including stem cells and
their local environment. This in turn implies that a functional definition of stem
cell is not a characterization of a single cell but of a heterogeneous population.
Aiming on a comprehensive representation of the full functional spectrum of tissue
stem cells and based on a previous work [1], Loeffler and Roeder proposed a
more sophisticated definition of stem cells [46]. They define tissue stem cells as a
potentially heterogeneous population of functionally undifferentiated cells, capable
of:

• homing to an appropriate growth environment

• proliferation

• production of a large number of differentiated progeny
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• self-renewing or self-maintaining their own population

• regeneration of the functional tissue after injury with

• flexibility and reversibility in the use of these options.

A detailed account of the characteristic features is provided in the original pub-
lication [46], however some aspects are of particular relevance for the focus of this
thesis and are briefly discussed below. First, the definition is based on “capabili-
ties” which is a linguistic synonymous of “potential”: certain functional tasks can
be accomplished in principle. Whether the potential is actually used, is highly de-
pendent on the particular situation (e.g. homeostasis, injury). Here, and second,
another aspect comes into play, which is the role of the particular environment. It
could be shown for different tissues that stem cell regulation is highly dependent
on the supportive function of the local environment which is commonly referred to
as “niche”. Within these niches stem cells are subject to different environmental
signals, which are generally supportive in nature and allow them to adaptively
react on changing demands. The fact that it has not been possible to expand
HSCs in vitro is most likely due to the incomplete understanding of the complex
signaling that occurs in the in vivo niches.
Third, the production of a large number of differentiated progeny includes the

option for unipotent stem cells that only give rise to one mature cell type, like cer-
tain stem cells of the epidermis. Forth, the terms self-renewal and self-maintenance
are often used interchangeable, although they might refer to slightly different phe-
nomena [62]. Self-maintenance generally refers to the property of a stem cell
population to preserve their functionality to act as stem cells, which is the gen-
eral case in a homeostatic situation. In contrast, self-renewal does also include
the repopulation of a tissue and the reestablishment of the corresponding stem
cell population after serious stress. However, it is more philosophical questions,
whether these are really distinct processes and if just one of both is sufficient to
fulfill the definition criteria. Fifth, there is a strong emphasize on the flexibility in
the use of the assigned capabilities. Since the list of criteria postulates a number
of different potentials, a particular cell does not necessarily have to make use of
all of them. It might well be the case that under certain environmental conditions
just one of the capabilities is used (e.g. the differentiation into a large number
of functional cells) whereas other capabilities (e.g. the self-maintenance) remain
unused. It might even be the case that the use of the potentials changes with
time including reversible developments. At this point it is most evident that any
functional definition of stem cells generally refers to a population of such cells.
Since the criteria are functional characteristics, a single stem cell cannot fulfill
them all at the same time. In this respect it is appropriate to abandon the view
of stem cell entities and to refer to the stemness of cell populations.
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2. Biological background: Stem cells and lineage specification

2.2. Hematopoietic stem cells and hematopoiesis

Hematopoietic stem cells are responsible for the production of blood cells through-
out the life of an organism. The origin of these cells during embryonic development
is not completely elucidated. However, it could be demonstrated that the forma-
tion of hematopoietic stem cells occurs in a complex developmental process that
involves several anatomical sites including the yolk sac, the placenta and the fetal
liver [63]. Finally, at birth, a pool of HSCs is established in the bone marrow
[64], in mice especially in the femur, in humans also in the pelvis, sternum and
vertebra. The bone marrow contains a particular micro-environment which on one
hand supports the maintenance of the stem cell population and on the other hand
provides a surplus of cells for differentiation and the production of mature blood
cells. In the post-natal, homeostatic situation, HSCs are generally in a quiescent
state and are only rarely activated into cell cycle [65, 66, 67].
Hematopoietic stem cells are a rare subpopulation among the cells in the bone

marrow. Estimates in mice revealed that between one to eight HSCs can be found
within 105 nucleated bone marrow cells [68, 69]. However, HSCs are morpholog-
ically undistinguishable from other cells in the bone marrow which do not have
the stem cell functionality. Although, the expression of certain surface markers
has successfully been used to enrich for HSCs up to a purity of one stem cell in
two selected cells it is still not possible to prospectively identify a stem cell with
certainty [70].
Unlike other stem cell systems with a well-structured spatial arrangement (e.g.

the small intestine or the hair follicle), the identification of HSCs based on spatial
information is not possible. It is the semi-liquid composition of the bone marrow
that makes it very challenging to study HSCs and their interactions with the local
micro-environment in the in vivo situation [71]. This is also the reason why a
precise identification of the hematopoietic niche as a complex of local and sys-
temic growth factors, stroma cells, and extra-cellular matrix components, is such
a difficult task. However, it is a well established fact that the interaction of stem
cells with is local environment are indispensable for the functionality. Originally,
the perception of an inductive microenvironment was introduced in early 1970s
by John Trentin [72, 73], however it is generally Raymond Schofield [74] who is
credited with the concept of a stem cell niche. In this interpretation a niche corre-
sponds to a defined anatomical site that regulates stem cell function by means of
secreted and cell surface molecules, mechanical signals, spatial arrangements and
particular metabolic conditions [75, 76]. Although precise knowledge about the
spatial structures is missing, a schematic visualization of the concept is provided
in Figure 2.1.
Meticulous work revealed that osteoblast cells play a crucial role in the construc-

tion of the hematopoietic niches. Osteoblasts potentially mediate the adhesion of
HSCs to the particular niches by the formation of N-cadherin/β-catenin adherens
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2.2. Hematopoietic stem cells and hematopoiesis

Figure 2.1.: The hematopoietic niche.
In the picture, stem cells are shown in close proximity to the osteoblast and shel-
tered by stromal cells and extracellular matrix components. Picture reproduced
from [77] with kind permission from Kateri Moore.

complexes. N-cadherin function is decreased in the course of differentiation which
in turn might promote the displacement from osteoblastic niche. A major role to
facilitate a connection between osteoblasts and HSCs has been demonstrated for
the Ang-1/Tie2 signaling, which is important for sustained quiescence and long-
term repopulation ability [78]. Similar regulating functions have been assigned to
the Notch and Wnt pathways, however the exact regulation needs further inves-
tigation. An excellent overview about the state of research has been published in
a review article by Moore and Lemischka [77].
The availability of osteoblast niches seems to be a major regulator of the ab-

solute stem cell number [79]. However, besides the dominance of the osteoblast
niches in the bone marrow also other tissues, like spleen and liver, can provide sim-
ilar functionality [80, 81] and might replace the bone marrow niches in situations
of stress [82]. In this context, it has recently been shown that also sinusoidal en-
dothelial cells in bone marrow establish an alternative, so called “vascular” niche
for HSCs [83]. Whereas in the osteoblast niches stem cells are primarily main-
tained in the quiescent state, vascular niches seem to be involved in the regulation
of stem cell proliferation, differentiation and mobilization. However, the mutual
regulation between these different supportive environments is only insufficiently
understood.
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2. Biological background: Stem cells and lineage specification

A surplus of cells that is not necessary for the maintenance of the stem cell
pool undergoes differentiation. These cells progressively lose their potential to act
as stem cells, undergo massive expansion and develop into mature cell types that
are finally released into the peripheral blood. Specifically, three different types
(lineages) of blood cells are all derived from a common class of HSCs, namely ery-
throcytes, leukocytes and platelets. Erythrocytes are responsible for the oxygen
transport from the lungs to the different organs and tissues. This transport is
facilitated by the protein hemoglobin, which is uniquely present in erythrocytes
and the corresponding precursor cell stages. Furthermore, erythrocytes are char-
acterized by the loss of their nucleus which has been discharged during the late
normoblast stage. In humans, erythrocytes circulate in the peripheral blood for
about 120 days. Leukocytes are composed of a mixture of different cell types,
most of which are primarily involved in the immunoreactions of the organism.
The mutual interaction of these cells is important for an optimal immuno-defense,
although the different leukocytes differ significantly in their appearance and func-
tion. It is generally distinguished between granulocytes (neutrophils, eosinophils,
and basophils), lymphocytes and monocytes / macrophages. Leukocytes persist
in the peripheral blood between a few hours (neutrophils) up to months and years
(lymphocytes). Thrombocytes, also known as platelets, are responsible for blood
coagulation and wound closure. The average life span for thrombocytes is about
10 days.
The intermediate developmental stages leading to the production of the mature

blood cells are often comprised in a hierarchical tree structure. Besides the final,
mature cell types many precursor stages can be identified based on morphology
or the expression of characteristic surface markers. The particular processes that
regulate the development of the distinct cell types are generally referred to as
lineage specification. Since it is the focus of the thesis to provide a principle
understanding of lineage specification, this subject is more extensively discussed
in the Section 2.3.
In the light of the definition of stem cells provided in the previous section, HSCs

are a primary example to fit the stated criteria. For this system, transplantation
experiments have been established as the most rigorous proof of stem cell function
since all criteria need to be fulfilled in order to guarantee long-term reconstitution.
In such experiments, donor-derived HSCs are transplanted in lethally irradiated
animals that do not have functional hematopoiesis anymore. It has been shown
that already one HSC is sufficient to reestablish complete hematopoiesis to normal
levels and to rescue the animal [84]. However, the application of repopulation
experiments also has serious limitations. E.g. the process of irradiation causes a
number of side effects that are hard to quantify. Furthermore, the reestablishment
of hematopoiesis requires the support of a functioning micro-environment but also
the contribution of other blood cells to guarantee the animal’s survival briefly after
transplantation.
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2.3. Lineage specification of hematopoietic stem cells

2.3. Lineage specification of hematopoietic stem cells

Besides the developmental options of self-renewal, differentiation, migration and
apoptosis, stem cells and their progenitors undergo a decision process to select the
type of functional cells to which they contribute. The question, how stem cells
specify this cell type, is long-standing and will be elucidated from a conceptual
perspective within this thesis.
Throughout the thesis the term lineage specification is used to characterize the

sequence of decision steps that finally leads to lineage commitment, manifested
by the acquisition of particular lineage specific features. The term differentiation
refers to the actual process of acquisition of these lineage specific features and does
also include the loss of self-renewal ability. Lineage potential describes the general
ability of a stem or progenitor cell to produce a certain number of different types
of mature functional cells. In contrast, the lineage contribution of a particular cell
describes the cell types actually produced in a particular differentiation process,
and may therefore comprise only a part of the cell’s lineage potential.

2.3.1. Phenomenology

The hematopoietic system is commonly perceived as a hierarchy with the stem
cell at the origin giving rise to lineage restricted progenitors and finally to ter-
minally differentiated end cells [85, 86, 87, 88], see also Figure 2.2. Different
developmental stages within in this tree-like differentiation sequence have been
characterized as follows: The pool of multipotent HSCs consists of long-term re-
constituting hematopoietic stem cells (LT-HSCs) that can repopulate an lethally
irradiated animal and establish life-long supply of all hematopoietic lineages. Fur-
thermore, the multipotent HSCs also include the so called short-term repopulating
hematopoietic stem cells (ST-HSCs) that also give rise to all hematopoietic lin-
eages, but do so for only 8-10 weeks. It is commonly assumed that ST-HSCs
are an intermediate cell stage between LT-HSCs and the more lineage restricted
progenitors as they are the common myeloid progenitor (CMP) and the common
lymphoid progenitor (CLP). In a further set of decisions CLPs give rise to the
different cells of the lymphatic lineages: B- and T-lymphocytes and natural killer
cells. In contrast, CMP normally differentiate to cells of the myeloid lineages,
among them granulocytes, macrophages, erythrocytes and thrombocytes.
The hematopoietic system is able to propagate changes in the demand of pe-

ripheral blood cells using feedback mechanisms that act on earlier cell stages. Such
regulations are facilitated e.g. by the release of cytokines and chemokines [89, 90].
By adjustments of early lineage decisions and increased expansion the system is
able to adaptively respond to such changing needs which are introduced e.g. by
injuries, infections or high altitudes.
In a series of experiments in the 1980s, Ogawa and coworkers [27, 28, 35] studied
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2. Biological background: Stem cells and lineage specification

Figure 2.2.: The hematopoietic system.
Different, prominent cell types of the hematopoietic system are arranged in a
“classical” hierarchical ordering that represents the major lines of development.
Picture taken from [91].

the lineage specification potential of hematopoietic progenitor cells. In particular
they used hematopoietic, spleen-derived mouse cells [27] and human umbilical cord
blood cells [28] to examine and compare the developmental fate of two daughter
cells derived from one parent cell. From their results the authors concluded that
committed cells are derived from multipotent progenitors through a progressive
restriction of lineage potential, in which the restriction in type and number of
lineages occurs in a stochastic fashion. In their interpretation, which still holds
today, the contribution of lineages which is observed in the progeny of single
differentiating cell can only be predicted in a statistical sense. The particular
experiments will serve as a primary reference to verify the proposed modeling
approach.

The question remains, how the phenomenological view on lineage specification
can be mapped on an appropriate molecular basis in which lineage specification
is interpreted as a shift in gene expression patterns and correlated to epigenetic
modifications.
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2.3. Lineage specification of hematopoietic stem cells

2.3.2. Molecular aspects of lineage specification

Although many details on the molecular mechanisms of lineage specification are
still unknown, it appears that certain molecular processes facilitate lineage specifi-
cation of multipotent progenitor cells to select and to commit to one out of a finite
number of predefined lineages. Since lineage committed, mature cells are charac-
terized by discrete and robust “genetic programs” supporting the functional and
morphological requirements, lineage specification is the process of establishing the
particular cell type-specific gene expression pattern [92]. The processes involved
do not necessarily act on the transcriptional level alone but potentially include all
kinds of molecular regulations, e.g. post-transcriptional and translational modifi-
cations, phosphorylations, signaling pathways and epigenetic alterations. Because
of this complexity of possible interactions a comprehensive, conceptual under-
standing of the nature of multipotency and the dynamic processes that initiate
and regulate lineage specification is still incomplete.

Priming. Although great effort has been made to obtain characteristic tran-
scriptional profiles of various stem cells [57, 58, 93]), no consensus of a unique,
stable stem cell state could be reached. It becomes increasingly evident that mul-
tipotency, as one of the defining characteristics of stem cells, is a dynamically
stabilized feature associated with the simultaneous coexpression of lineage spe-
cific, potentially antagonistic genes [29, 31, 93, 43, 59]. Such a “promiscuous”
coexpression of genes specific for alternative lineages fates, commonly referred
to as priming, has been reported for multipotent cell types of the hematopoi-
etic system [30, 32]. It can be envisioned as the molecular representation of the
potential for different developmental options which disappears in the course of
differentiation when certain lineage restricted genes are up-regulated while others
are down-regulated. A sketch is provided in Figure 2.3.

Regulation of lineage specification. The regulation of specification is ulti-
mately required to respond to changing demands of mature blood cells. Such con-
trol mechanisms are commonly facilitated by the action of regulatory molecules,
such as cytokines, chemokines and growth factors like erythropoietin or G-CSF
[89, 90] that mediate changing demands and skew the lineage specification pro-
cess. For the action of such external signals two general modes of regulation are
discussed [94, 95, 87, 96]: In the instructive mode the external signals do directly
impose their regulation on the transcriptional level by promoting or repressing
certain gene activities via signal transduction cascades. This means that the cell-
intrinsic lineage decision is skewed. In contrast, in the selective mode, the external
signals lack lineage-determining capacity and the cells randomly decide between
preexisting developmental fates. This way, the cell intrinsic decision is not skewed
and the external signals exert their action by promoting the survival of already
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differentiated cells

stem cells

Figure 2.3.: Priming.
The priming behavior of the HSCs is depicted by the equal sized symbols indicat-
ing lineage specific gene expression patterns. In the course of differentiation one
lineage specific program is finally up-regulated while others are down-regulated.
This change in the expression patterns is encoded in the symbol sizes and the
corresponding “color-coding” of the cell membrane.

committed cells. In particular it appears that certain cytokines support the sur-
vival of cells expressing a subset of lineage specific receptors while in the absence
of the cytokines the cells undergo cell death. Using such a regulation it is possible
to skew an initially balanced cell population to preferentially contribute to some
but not all available lineages. These modes of lineage specification are briefly
outlined in Figure 2.4 in which the lineage decision process is separated from the
survival under appropriate conditions.

The latter, selective mode of lineage specification is often referred to as stochas-
tic (or intrinsic) as compared to deterministic (or extrinsic) which is also used as
an alternative description for the instructive mode. However, this terminology is
confusing and not suited to distinguish properly between these modes of lineage
specification. Perceiving the cell-intrinsic regulation in the instructive mode as
a shift of probabilities (rather than the deterministic on-off mechanism) for the
different available cell fates, the actual cell fate decisions can still be stochastic.
Therefore, the more discriminative terms instructive (regulated cell-intrinsic deci-
sion) and selective (unregulated cell-intrinsic decision and selective survival) will
be used throughout this thesis.
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B − selective

A − instructive 

decision

decision survival

survival

Figure 2.4.: Modes of lineage specification.
(A). In the instructive mode of lineage specification the lineage decision is in-
trinsically skewed to commit to one cell type instead of another (indicated by
the block). Selective survival plays a minor role. (B). In the selective mode the
intrinsic lineage decision is rather balanced giving rise to cells of different lin-
eages. However, external signals selectively promote the survival of some lineages
whereas others are discarded (indicated by the block).

Temporal extension. The process of lineage specification is not realized “all-
of-a sudden” but involves a temporal extension in which the cells pass through
several intermediate stages (see Figure 2.5). On the molecular level, this refers to
the time which is necessary to remodel the genetic expression pattern including
the corresponding changes on the epigenetic level. Furthermore, the expression
pattern needs to be stabilized by the activation of down-stream target genes and
the subsequent changes in cellular morphology.
In this concept, in which lineage specification is understood as a temporally

extended sequence of molecular alterations, it is immediately evident that an un-
derstanding of the underlying process requires the measurement of time courses of
the development. Such time structured experiments that analyze the phenotypical
changes of cell cultures are rather well established [39, 97], although homogeneous
cell populations are still difficult to achieve. The availability of high-throughput
methods allows to extend these approaches towards the molecular level [40, 98].
Nevertheless, these experiments suffer from a structural insufficiency of stem cell
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stem cells 

differentiated cells

time

Figure 2.5.: Temporal extension.
Lineage specification is described as temporally extended process in which a cell
transits through different intermediate steps. Starting from primed stem cells
the up-regulation of a lineage specific gene expression patterns involves different
stages of remodeling, indicated by the changing sizes of the colored symbols.

cultures since they are based on cell populations rather then on individual cells.
Given the inherent heterogeneity of such cultures the experimental findings are
always averages of distinct cells at potentially different developmental stages and
can hardly be attributed to a particular cell. However, for the example of the
PU.1-GATA-1 interaction on the level of common myeloid progenitors (CMP),
the high-throughput data has been used to analyze the dynamics of the molecular
switch in a time dependent manner [92].

Key regulators and switches. It could be shown successfully that a number
of transcription factors are actively involved in the process of lineage specification
[43, 99, 100, 101]. Although a comprehensive understanding of their interactions
is still missing, it has been proposed that such key regulators act on particular
“switch points” of the developmental sequence by activation of a certain lineage
specific program at the cost of an alternative program [64]. Figure 2.6 provides a
sketch illustrating the typical cross-antagonism between two generic transcription
factors.
As a prominent example, it has been shown on the level of common myeloid

progenitors (CMP) that the overexpression of transcription factor GATA-1 can
induce differentiation towards erythroid/megakaryocyte development as opposed
to myeloid lineages [102]. A similar mechanism is know for transcription factor
PU.1 although in the opposite direction [103]. Such a fate switch between two
alternative lineage-specific “programs” can be achieved if the key regulator for one
lineage program has a direct negative feedback on the competing lineage programs.
In the case of transcription factors PU.1 and GATA-1 it could be shown that be-
sides promoting their “own” program (autoregulation) the transcription factors
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Figure 2.6.: Key regulators.
The sketch illustrates the cross-antagonism between two generic transcription fac-
tors, termed A and B, that are key regulators for the development of the “blue”
and “green” lineage, respectively. Such a switch like behavior is facilitated by the
ability of A to suppress transcription of B, and vice versa.

negatively regulate their mutual expression [104, 105, 106, 107], thus suppressing
the competition counterpart. For the particular case of the PU.1-GATA-1 inter-
action, but also in the more general case, it had been demonstrated by a number
of theoretical approaches that such an antagonistic action is sufficient to induce
switch-like behavior [92, 108, 109, 110, 111].

2.3.3. Reversibility of lineage decisions

Within the classical paradigm of a hierarchical development from stem cell towards
differentiated cell types, lineage specification is commonly perceived as series of
irreversible fate decisions. This implies that once a decision is made, a cell is
committed to the particular lineage and cannot alter its fate [112]. However,
this restrictive view on lineage specification has been seriously challenged by a
number of experimental [22, 41, 42] as well as conceptual works [113, 114]. For
the example of differentiated B cells it has been reported that enforced expression
of C/EBPα and C/EBPβ leads to their rapid and efficient reprogramming into
macrophages [115]. Similarly, there is evidence that conversion between early
committed erythroid and myeloid cells is possible if the culture conditions are
changed respectively [116]. Also on the conceptual level is has been argued that
a mechanism of lineage specification, which includes the potential for reversible
actions, is much more flexible in response to different environmental signals [113].
With respect to lineage decisions the term reversibility is commonly used in
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stem cells
differentiated cells

Figure 2.7.: Reversibility.
In contrast to the solid arrows indicating major developmental pathways, the
concept of reversibility allows for the existence of alternative pathways. The
dashed arrows illustrate the concept of fate reversibility. Such a reversion from
one lineage into another might by a rare event under physiological conditions but
can be achieved by targeted overexpression of certain genes. The same applies to
the dash-dotted arrow indicating developmental reversibility in which the cell is
shifted to a less committed state.

two, slightly different meanings: First, reversibility describes the reversion of cell
fates as it is outlined for the above examples: cells can be manipulated to re-
vert their fate to a different cell type as the one they are originally committed
to. This phenomena is sometimes also referred to as “trans-differentiation”. In
a related context the term plasticity has been introduced to characterize the po-
tential of a (e.g. hematopoietic) stem cell to revert its fate towards another (e.g.
non-hematopoietic) lineage. In its second, more conceptual meaning, reversibil-
ity refers to the developmental (and molecular) reversion of a decision process by
“moving the cell backwards” to an earlier developmental stage. This reversion
might include the reacquisition of stem cell properties such as self-renewal ability
and multi-lineage potential. Prominent example of such behavior are found in
Drosophila melanogaster [117, 118] and are also proposed for the hematopoietic
system [46, 119]. Such behavior is sometimes referred to as “de-differentiation”.

The different aspects of reversible lineage decisions are visualized in Figure 2.7.
However, it remains illusive whether a clear distinction between these two aspects
is necessary and instructive. Both, trans- and de-differentiation characterize a
behavior that is contrary to the major developmental pathways. The physiological
and functional importance of such reversible developments remains subject to
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further experimental and theoretical research.

2.3.4. Heterogeneity and lineage bias

There is increasing evidence that HSCs are an intrinsically heterogeneous popula-
tion, not only with respect to their repopulation ability [45, 120, 121, 122], their
cell cycle activity [66, 67] or their expression of certain surface markers [123], but
also with respect to their lineage contribution. Using single cell transplantation
experiments Dykstra and colleagues demonstrated that individual HSCs showed
different contributions to the populations of B-, T- and myeloid cells after reestab-
lishment of hematopoiesis in irradiated hosts [45]. In particular, the authors de-
fined four distinct types classified according to their contribution to either myeloid
or lymphoid cells. Two of these cell types with a significantly higher contribution
to the myeloid lineages showed increased repopulation potential. Upon transplan-
tation of bone marrow from the corresponding primary recipients in secondary and
tertiary hosts the pattern of lineage contribution was largely reproduced, suggest-
ing that the so called “lineage bias” is stabilized by epigenetic mechanisms. These
results are in general agreement with earlier reports about the stable inheritance
of the lineage bias and higher repopulation efficiency for the myeloid-biased stem
cells [44]. Figure 2.8 illustrates the idea of a lineage biased, heterogenous stem
cell population.
However, Dykstra and colleagues [45] also report that in the course of trans-

plantations a slow conversion of the subpopulations towards a higher contribution
of lymphoid cells and decreasing repopulation potential has been observed. In this
context, it is less obvious whether a classification of a defined number of subsets is
helpful for the understanding of the population inherent heterogeneity or whether
a continuous spectrum does better reflect the underlying regulation.

2.4. Analysis of single cell developments

The direct experimental characterization of lineage specification in HSCs poses
a number of technical difficulties. Most challenging is the analysis of the devel-
opment of individual stem cell in vivo. Only in the case of clonal repopulation
assays or by the use of retroviral markers, the lineage contribution of single cells
is accessible over time. However, the location of the cells in the bone marrow and
their activation patterns are subject to extensive research [71].
Alternatively, many experiments characterizing the nature of the lineage speci-

fication process in HSCs have been performed in culture systems. As outlined in
the previous section, these experiments are mostly designed to capture the overall
lineage contribution of a certain initial cell population without paying much atten-
tion to the temporal evolution and chronology of cellular development as it occurs
within a single cell. However, it is precisely the development of each individual

25



2. Biological background: Stem cells and lineage specification

lineage bias

stem cells

differentiated cells

Figure 2.8.: Heterogeneous lineage contributions.
Stem cell populations (shown on top) contain a mixture of cells with varying
potential to contribute to one or the other mature cell types. Such lineage biased
cells primarily give rise to one particular cell type (solid arrows) and yield only
minor contributions to other cell types (dashed arrows). Whether there is a slow
flux between these lineage biased states (dotted arrows) is still controversial.

cell and its progeny that represents a possible realization of the developmental se-
quence and retains much of the necessary information: on the correlations between
differentiation and cell cycle regulation, on the timing of lineage specification pro-
cesses and cell death events as well as on the role of asymmetric developments
[124, 125]. In this respect, it is the information about each cell’s identity that
allows to put the available data in its divisional context. Figure 2.9 outlines the
dilemma.

It is here that the digital revolution in microscopy as well as the increasing
memory capacity of computer systems opens a new dimension for the applica-
tion of time lapse video microscopy for the analysis of cell cultures. Such high
resolution technologies facilitate the tracing of a single cell, comprising all its
progeny over extended time periods up to several days. This includes the tempo-
ral analysis of cell specific parameters like morphology, cell cycle time, motility
or the occurrence of cell death within the population context. Time lapse video
monitoring with single cell tracking has been applied to cultures of hematopoietic
[124, 126, 127] as well as neural [128], muscle [129], and embryonic stem cells
[130]. In a recent study it could be shown that the identification of patterns in
the in vitro cell cycle time distribution proved useful for the enrichment of cells
with higher repopulation potential in vivo [126]. Continuing these ideas, the fluo-
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Figure 2.9.: Single cell development.
(A). Layout of a “classical” cell culture experiment for cell fate analysis in which a
population of undifferentiated cells (grey) develops into a populations of cells with
contributions of different lineages (blue and green). However, there is an infinite
number of possibilities giving rise to this outcome. Two potential realizations
are shown in (B) and (C) with different levels of division, cell death and lineage
potential of the originally undifferentiated cells.

rescence labeling of marker genes for differentiation and lineage specification will
soon allow a better identification and temporal determination of central decision
events in the developmental sequence [131, 132]. All these different information
on cellular development, divisional history, and differentiation can be comprised
into a pedigree-like structure in which the founder cell represents the root and the
progeny is arranged in the branches. These pedigrees represent a special class of
annotated trees and are referred to as cellular genealogies [125].

Analyzing the time lapse video of a cell culture allows the tracking of a multitude
of root cells. The resulting cellular genealogies represent unique examples of the
developmental sequence as they occur under the particular assay conditions. Sta-
tistical analysis of these cellular genealogies can reveal typical patterns of cellular
development as they are imprinted in the topology. Although this novel technique
is pushed by a number of groups, there are no established measures for analyzing
and comparing this particular type of data. However, a formal characterization
of the topologies together with a set of newly developed measures is sufficient
to extract the “footprints” of potential mechanisms of lineage specification that
are imprinted in the cellular genealogies. A more detailed account is provided in
Chapters 6 and 7.
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2. Biological background: Stem cells and lineage specification

2.5. Experimental techniques and measures

Hematopoietic stem cells are among the best studied stem cell systems for which
a large body of experimental results has been accumulated over the last decades.
There exists a huge number of available assays and isolation techniques to study
the functionality of these cells. Some of the techniques are briefly explained as
they support the motivation and understanding of this thesis.

Hematopoietic stem cell assays. As outlined in Section 2.1 the ability of
a stem cell population to repopulate a depleted animal is still the major func-
tional criteria of stem cell function. This is tested using the long-term repopu-
lating ability (LTRA) assay which evaluates the contribution of donor cells to all
hematopoietic lineages after 6 or more months [133]. Using this assay it is possible
to distinguish long-term repopulating stem cells from cells that only contribute
to hematopoiesis for a shorter time span (short-term repopulating cells) which
do not guarantee the extended survival of the animal. Moreover, the assay also
accesses the contribution to the individual lineages and is suited to detect lineage
biases induced by the donor cells [45].
Alternative to the LTRA assay a number of in vitro assays have been developed

to measure the frequency of progenitors (colony-forming unit in culture; CFU-C),
stem cells (long-term culture-initiating cell; LTC-IC), or both (cobblestone area-
forming cell assay; CAFC) [134, 135]. Generally, these assays are less suited to
determine the lineage potential of the cell types in question.

Hematopoietic stem cell markers. Especially in the hematopoietic system,
in which a prospective isolation of stem cells based on their morphology or local-
ization is not possible, alternative methods for the purification are required. Most
such techniques are based on flow-cytometry which allows to select cells based on
the expression (or absence) of a set of cell surface proteins. In order to quantify
these expression levels, fluorescence tagged antibodies are used which bind to the
corresponding antigens on the target cells.
The most common strategy to enrich for HSCs is the selection of a subpop-

ulation of cells that show no or very low expression for any markers of mature
cell types such as TER-119 (erythroid), B220 (B cells), Mac-1 (monocytes), Gr-1
(granulocytes), or CD3, CD4 and CD8 (T cells) but high or very high expression of
Sca-1 and c-Kit [136, 70]. Such cells are termed LSK (lin−, Sca−1high, c−Kithigh)
cells. However, the purity of long-term repopulating HSCs can be enhanced using
additional signals of the SLAM1 marker family [82]. HSCs with high repopulation
potential were reported to be positive for the SLAM markers CD150 but negative

1Signaling Lymphocyte Activation Molecule

28



2.5. Experimental techniques and measures

for CD48, CD244, and CD41. Combining these markers together with the LSK
markers up to 50 % of the isolated cells qualified for single cell repopulation[82].
Alternatively, dye efflux properties are regularly used to select for cell popula-

tions containing increased fractions of HSCs. For example, the exclusion of efflux
of DNA binding dye Hoechst 33342 (commonly referred to as side population)
proved useful to further enhance the purity of LSK populations [137, 70].
In the human situation, HSCs have been purified on the basis of the expression

of cell surface markers such as CD34 and CD133 and the absence of glycoprotein
CD38 [138]. However, in the case of CD34 expression it could be demonstrated
that the expression levels depend on the cell’s activation state and are subject to
reversible changes [22, 23, 139].
Although the outlined purification protocols are indispensable tool to enrich

for HSCs there are also a number of structural deficits connected to these meth-
ods. First, for many of the used markers it is not yet clear how their expression
is functionally correlated to the stem cell function [60, 61]. Second, there is a
considerable level of heterogeneity inherent to the hematopoietic system [140]. It
might even be the case that a fluctuations in the expression of certain markers are
ultimately required for the function of HSCs and might be reestablished after a
purification procedure [61, 123].

Differentiation assays. Hematopoietic stem and progenitor cells are generally
cultured in either of two conditions: self-renewing or differentiating. In the first
case the culture conditions are optimized (using appropriate stromal cell lines,
serum and/or combinations of cytokines) to keep the cells in a rather undiffer-
entiated state, possibly increasing their numbers without major contributions of
differentiating cells. In the second case, the culture conditions are tuned to yield
a potentially pure output of differentiated cells of a special cell type. Typically,
such conditions are supplemented with appropriate growth factors and cytokines
(e.g. erythropoietin and stem cell factor for erythroid differentiation [141, 142]
or granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) for myeloid differentiations [143]).
The differentiation status of the cells is generally assessed using morphological

characteristics (supported by the use of specific staining methods), or the detection
of cell type specific surface markers as there are TER-119 for erythroid cells, B220
for B cells, Mac-1 for monocytes, Gr-1 for granulocytes, or CD3, CD4 and CD8
for T cells.

Single cell development. The development of single cells and their contribu-
tion to different lineages is most commonly studied in single cell assays [26]. After
plating individual cells the composition of the resulting colonies is studied using
above mentioned methods.
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2. Biological background: Stem cells and lineage specification

The availability of stable transgene insertion into a host genome allows for the
irrevocable and unique marking of individual cells as the random integration of
the transgene allows the detection of all its descendants. Based on this method
the retroviral gene marking has become an important tool for investigating the in
vivo fate of different cell types, both in animal models and in clinical applications
[144, 145, 146]. After transplantation of an appropriately treated HSC population
the contribution of multiple cell clones to the different hematopoietic cell lineages
can be studied over extended time periods.

Alternatively, clonal information about the development of individual cells can
be provided from continuous time-lapse monitoring of in vitro cell cultures [147].
In contrast to the clonal tracking using transgene integration, this method al-
lows for the derivation of complete pedigrees subtending from one initial cell. In
combination with the fluorescence labeling of certain relevant marker genes for dif-
ferentiation these methods hold a great potential to study the lineage specification
in its divisional and developmental context.

Molecular methods in stem cell biology. Modern stem cell research benefits
from the availability of biotechnological methods to study molecular processes
on many different scales. Especially the establishment of the polymerase chain
reaction (PCR) as a standard technique to amplify a single or few copies of a
piece of DNA or RNA across several orders of magnitude has greatly supported
this development. Furthermore, the development of different types of microarrays
allows for the large scale interrogation of molecular content in cell populations (e.g.
for the detection of mRNA transcripts (DNAmicroarrays), the presence or absence
of proteins (protein microarray), or protein specific DNA binding sites (Chromatin
immunoprecipitation on Chip; ChIP-on-chip)). Application of DNA microarray
techniques in time structured experiments can elucidated temporal changes in the
genetic expression profile and relate it to phenotypical and functional alterations
[40, 92, 98]. The availability of even more advanced methods for the sequencing
of pieces of mRNA and their simultaneous quantification using high-throughput
sequencing (also termed “pyrosequencing”) will dramatically influence biological
research in general and stem cell research in particular.

However, among the greatest challenges with these high-throughput techniques
is the statistical analysis of the resulting data, and in particular their integration
into an biologically meaningful context. It is often the case that among a set of
identified components and interactions just for a minority of them their role in
a relevant biological processes is already resolved. For the remaining findings a
comprehensive understanding of the underlying regulatory principles is missing
and can hardly be predicted based on the available data alone.
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2.6. Technical challenges and ethical considerations

Primary interest in stem cell research derived from the expectation to gain insight
into the organizational principles of higher organisms. Beyond this academic in-
terest it soon became clear that tissue resident stem cells hold a great promise for
medical applications as these cells are in principle able to regenerate or replace
diseased or mal-functioning tissue. As already illustrated in the introduction, a
direct translation into medical applications is still limited as many types of tissue
stem cells are rather difficult to isolate and to expand in vitro, are more or less
restricted to a particular tissue type and, in many cases, have limited capacity to
regenerate major parts of a tissue or even a whole organ.
In contrast, these limitations do not apply to embryonic stem cells. These cells

are derived from inner cell mass of the blastocyst and are defined as cells that can
be cultured in vitro for many passages and retain the principle ability to contribute
to all three germ layers. However, even the availability of embryonic stem cell
cultures did not overcome a fundamental problem in regenerative therapies which
is the immune-incompatibility between the allogenic donor tissue and the host
system, often resulting in transplant rejection.
In a remarkable experiment in 1996, Ian Wilmut and colleagues demonstrated

that the transfer of the nucleus of an adult endothelial cell of a sheep into a enu-
cleated oocyte (generally referred to a as somatic cell nuclear transfer) was in
principle sufficient to derive a developing blastocyst [148]. After implantation of
the resulting blastocyst in a surrogate mother a cloned animal (which in the first
reported case became known as “Dolly”, the Sheep) was established that was ge-
netically identical to the donor animal of the original nucleus. This experiment
proved that, first, all relevant genetic information is retained even in a differenti-
ated cell and that, second, there exist a possibility to derive genetically identical
(“cloned”) embryonic tissues with the full developmental potential to generate a
cloned animal.
Although the adaption of the experimental protocols to the human situation and

the derivation of patient specific human embryonic stem cell lines is in principle
possible these protocols involve a number of steps that are ethically controversial
as there are the donation and utilization of human oocytes, and the manipulation
of cloned human blastocysts. These techniques strongly interfere with several
aspects touching the dignity of human life, and the public discussion within this
area illustrates that there exists no general consensus on whether such cells should
be manipulated in order to use them for the treatment of severe and potentially
lethal human diseases.
However, the efforts to derive human ESC lines from cloned blastocysts declined

rapidly as an alternative method for the derivation of genetically-customized stem
cell lines became available. In 2006 Kazutoshi Takahashi and Shinya Yamanaka
proposed the reprogramming of normal body cells into pluripotent, embryonic-like
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stem cells by the use of retroviruses to transfect the cells with a set of four critical
transcription factors [6]. These methods became soon available for the human
situation [7, 149] and are now further refined to avoid the permanent integration
of viral factors and to ensure long-term safety of the reprogrammed cells [150].
The availability of protocols for the derivation of patient specific induced pluripo-

tent stem (iPS) cells overcomes two fundamental problems in regenerative stem
cell therapy: first, these protocols do not rely on the ethically questionable usage
of oocytes and the transient generation of human blastocytes and, second, the
resulting cells are genetically identical to the somatic cell donor, thus avoiding
complications from immune system rejection of the generated transplant. Al-
though these protocols do not yet exist for clinical applications there is a strong
research interest in this field and first results can be expected in a foreseeable
future. It is the challenge of the next decade to identify experimental techniques
to not only achieve the reprogramming from the somatic to the pluripotent state
but to direct the differentiation from the pluripotent state towards the desired
tissue type that is necessary for transplantation. At this point it is not even clear
whether a complete reprogramming to the pluripotent state is ultimately neces-
sary or whether a somatic cell can be directly reprogrammed and expanded into
another, desired type of tissue cell. A fundamental understanding of the under-
lying processes on all organizational levels certainly requires the joint efforts of
experimental biologist, clinicians and theoretical scientists alike.
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3.1. General aspects

3.1.1. Models in the natural sciences

Models are generally characterized as representations of a natural object or process
in which not all attributes of the original are necessarily considered (reduction
and abstraction). Focusing on the aim of a model construction and the benefit
of its application, certain aspect are intentionally neglected in order to pronounce
the particularly relevant features of the original and to allow the generation of
acceptably accurate solutions (pragmatism) [151].
In natural sciences, a theoretical model is a construct with a set of variables and

a set of logical and quantitative relationships between them to enable reasoning
about the underlying processes within an idealized logical framework. Such models
are an important component of scientific theories and can either be qualitative
(i.e. descriptive and logical representations) or quantitative (i.e. mathematical
representations). In contrast to qualitative models, quantitative models allow for
an analytic, numeric, or simulation analysis [152].
Quantitative model approaches have played an important role in most natural

sciences with particular success in the field of physics. However, even there it took
about 300 years from the earliest works of Galilei and Kepler until revolutionary
works by Maxwell, Planck and Einstein at the end of the 19th and beginning of
the 20th century that finally changed the perception on theoretical sciences. Since
this time theoretical physics has established as an indispensable branch of research
that actively guides experimental approaches in all fields of physics.
A similar influence of theoretical research is still lacking in biological sciences.

This is largely due to the nature of the studied objects which are living entities.
Such objects are difficult to define since they are themselves subject to a multitude
of extrinsic influences [153]. Moreover, the limited accessibility and the complex-
ity of the constituting parts have long hampered a rigorous characterization which
is a prerequisite for any quantitative model construction. Due to the increasing
availability of appropriate experimental techniques on one hand and the computa-
tional resources on the other hand, quantitative approaches are now gaining more
and more impact in the biological sciences. By reduction and abstraction, such
theoretical models are indispensable tools to elucidate regulating principles and
therefore to design experimental strategies and to verify results [154].
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3.1.2. Quantitative models in stem cell biology

Although the first demonstration of a self-renewing population of hematopoietic
progenitors by Till and McCulloch in the 1960s [48] was accompanied by a math-
ematical description of the data [155], theoretical approaches played a minor role
in stem cell biology for a long time. However, there are a number of outstanding
modeling contributions with significant impact on the research field as there are
the works of Mackey and Glass on the dynamical behavior of hematopoietic dis-
eases [156, 157], the works of Wichmann, Loeffler and colleagues on the regulation
of granulopoiesis and erythropoiesis [158, 159, 160, 161, 162, 163] as well as on the
organization of intestinal and epidermal stem cells [164, 165, 166], the works of
Ogawa and coworkers on the stochasticity of cell fate decisions [167], the works of
Abkowitz and colleagues on hematopoietic stem cell regulation and malignancies
[168, 169, 170, 171], the conceptual works on stem cell identity by Potten and
Loeffler [1] as well as their transformation in a comprehensive single-cell based
modeling framework for hematopoietic stem cells by Roeder and Loeffler [33].

The above list is neither complete nor does it establish a valuation. However
it demonstrates that theoretical models in stem cell biology address different bi-
ological phenomena which are also approached on different levels of description.
Whereas some models are based on average responses of a cell population rather
than on individual cells, others explicitly account for the variability between in-
dividual cells by modeling cellular interactions on the single-cell level. Inspired
by the increasing knowledge on the molecular organization of stem cells, there
is a novel class of models emerging that aims on the understanding of molec-
ular regulation and cell-intrinsic responses to external stimuli within individual
cells. However, these cell-intrinsic models have to be coupled to the cellular level
to achieve an understanding of the tissue organization. The different aspects of
modeling approaches in stem cell biology are subject of the subsequent Sections
3.2 and 3.3.

As outlined in the previous chapter, much of the common perception of stem cell
organization derives from the idea that stem and progenitor cells can be clearly
distinguished on the basis of their functional potential, their surface marker ex-
pression or even their morphology. This view is internalized in the hierarchical
structuring of stem cell organization as it is shown in Figure 2.2 and is fundamen-
tally based on the concept of distinct (stem) cell compartments. This reflects the
idea that differentiation of primitive stem cells is a sequential transition through a
sequence of developmental states that can by characterized by compartments with
a certain set of features (e.g. expression of cell surface markers, lineage potential)
and well-defined boundaries. As the stem cells pass through these subsequent
compartments they progressively lose stem cell potential, restrict their lineage
choices and acquire lineage specific features.
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However, a functional test, like the determination of a single cell’s lineage po-
tential within a certain assay is inherently incomplete since it cannot be exclude
that under different assay conditions another lineage contribution would be ob-
served. Experiments on the independent development of paired daughter cells
showed that cells immediately separated after division do not necessarily undergo
the same developmental processes and contribute to identical lineages [35, 28].
This imposes a structural dilemma, since the measurement of a certain function
of a cell does ultimately alter the cell itself. This phenomena has been described as
the “uncertainty principle of stem cell biology” [46] and can equally be applied to
experiments that aim to simultaneously measure self-renewal and differentiation
capabilities or the differentiation potential along multiple lineages.

The “compartmentalization” of the hematopoietic system is closely interrelated
(but not identical) to the idea that the transition through the particular com-
partments is always unidirectional from the most primitive cell stages down to
the committed progeny. However, it has been shown that the repopulation poten-
tial and the lineage contribution of stem cells is correlated to the cell cycle [172],
and that the expression of surface markers like CD34 and Sca-1 are subject to
reversible changes [22, 123]. Such findings on reversibility as well as the inability
to prospectively isolate pure stem cell populations [173] seriously challenge this
concept of strictly compartmentalized stem cell hierarchy.

This controversy lead to the proposition of a concept of stem cell organization
on the basis of flexible and self-organizing cellular units (agents) which are not by
definition restricted to a unidirectional flow through a sequence of compartments
(see for example [1, 34, 46, 60, 113, 174, 175, 176]). Although such adaptive
systems proofed very robust in other fields of science (e.g. swarm intelligence, ant
algorithms, distributed computing), there is still a level of reluctance against such
novel and alternative approaches in stem cell biology.

3.2. Models of stem cell self-renewal and differentiation

It is a long-standing set of question on how the balance between self-renewal and
differentiation is maintained in the hematopoietic but also in other stem cells
systems, how the stem cells maintain the ability to respond to changing demands
and how malignancies alter these organizational properties. In simple words, it is
asked which mechanisms account for the maintenance of a stem cell population
on one side and on the other side provide enough mature cells for the support
and regeneration of the particular tissue. An overview over the main classes of
quantitative models in hematopoiesis is provided below.
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Figure 3.1.: Compartment model of hematopoietic self-maintenance.
A simple compartment model was proposed by Till and McCulloch [155]. Cells in
the stem cell compartment (dark grey) are either transferred into the compartment
of differentiating cells (grey circles) with rate q or they undergo division with
rate p producing two daughter stem cells. In the stable situation the rates for
differentiation and division are equal p = q.

3.2.1. Compartment models with fixed stem cell characteristics

Entity-based models. Entity-based models of stem cell organization emerged
from the classical perception of stem cells as well-defined and clearly distinguish-
able objects. These entities are defined by a set of fixed developmental options
characterizing the transition between the compartments. Such compartments are
commonly envisioned to contain certain cell populations like stem cells, progeni-
tors, or more mature cell types. The transition rules can potentially be influenced
by extrinsic signals like feedback regulation from mature cell stages using growth
factors or micro-environmental regulations.
A typical example of this model class is the mathematical model that ac-

companied the first experimental demonstration of the self-renewing ability of
hematopoietic progenitor cells by Till and McCulloch in the 1960s [155]. This
model assumes that within a stem cell compartment each cell can either divide
symmetrically (giving rise to two stem cells which corresponds to self-maintenance
of the population) or differentiate (Figure 3.1). These options are realized with
fixed probabilities denoted as p and q, respectively. Even without the assumption
of feedback regulation or micro-environment interaction, the authors could ex-
plain the frequency distribution of spleen colonies (CFU-S colonies) in secondary
recipients.
Picking up on this idea of stochastic transitions between rather distinct cell

populations, in which a probability is assigned to each developmental option, the
mathematical concept was extended for the hematopoietic system [177] and for
other tissues [166]. In a simple, albeit elegant approach, Abkowitz and colleagues
used such an extended model to access the frequency and replication kinetics
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of hematopoietic stem cells in vivo as well as the evolution of myeloproliferative
disorders [169, 170, 171]. Besides the developmental options of symmetric division
and differentiation the authors also accounted for the process of apoptosis.

Population-based models. Assuming homogeneous stem cell populations of
sufficient size, entity-based systems can be described equally well by changing
to population-based approaches in which the individual stochastic decision is re-
placed by averaged, deterministic rate constants. Feedback regulations can be
introduced in both scenarios by a dynamic adaption of the either the transi-
tion probabilities that balance self-renewal and differentiation in the stochastic
(single-cell based) approaches or by the corresponding rate constants in the de-
terministic (population-based) approaches. Additionally to the evaluation of the
steady-state situation, such feedback regulations allow the analysis of the system
response to various perturbations, as they occur after damage or injury. Sophis-
ticated examples for these kind of models haven been developed by Mackey and
coworkers. Under the assumptions of delayed feedbacks from later cell stages on
the hematopoietic stem cell compartment the authors explained typical oscilla-
tion patterns occurring in a number of specific malignancies of the hematopoietic
system [156, 157, 178, 179, 180]. Even more extensive are the multi-compartment
models of later stages of hematopoiesis by Loeffler and colleagues, as there are
models on granulopoiesis [159, 160, 181] and erythropoiesis [161].

Symmetric and asymmetric divisions. Till and colleagues already recog-
nized in 1964 that the possibility of an asymmetric division (one stem cell giving
rise to on stem and one differentiated cell) can be well integrated in their concept
of separating division and differentiation by assuming that a symmetric division
event is followed by the differentiation of just one daughter cell (Figure 3.2). This
view was also supported by single cell experiments using bcl-2 transfected FDCP-
mix cells [182] as well as by the conceptual works of Loeffler and Roeder [1, 46, 183].
In contrast, and driven by the observation of functionally asymmetric divisions in
other stem cell system (e.g. in invertebrates [184] or in other tissues like the ner-
vous system [185] or the epidermis [186]), the concept of asymmetric cell divisions
is still strongly promoted in hematopoiesis and is present in many debates about
organizational principles [94, 46, 114]. On a simplified level it is often assumed
that only by means of asymmetric divisions the balance between self-maintenance
and differentiation can be established. However, this balance needs to be main-
tained on the population level and at the present stage there is no convincing
evidence for a functionally asymmetric division event in hematopoiesis at the sin-
gle cell level. Moreover, the assumption of strictly asymmetric divisions of HSCs
are not sufficient to explain the observed dynamic response of the hematopoietic
system to injury or damage as a loss in stem cell number cannot be compensated.
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Figure 3.2.: Symmetric and asymmetric divisions.
(A). On the population level, the number of stem cells (dark grey) is main-
tained while at the same time a fraction of differentiating cells (colored circles)
is generated. (B). On the cellular level this results can be obtained by assuming
functionally asymmetric divisions of the stem cells in which one daughter cell re-
mains a stem cell whereas the other daughter cell enters into differentiation. (C).
Alternatively, the findings on the population level can be obtained if the processes
of division and differentiation are decoupled. Thus, each stem cell division leads to
the generation of two closely similar daughter cells (symmetric division) of which
some might undergo further differentiation (colored arrows).

3.2.2. Models of adaptive and self-organizing stem cell systems

It has become increasingly evident that an entity-based view on stem cells is not
appropriate to account for all facets of “stemness” including the degree of hetero-
geneity within stem cell populations, the reversibility of cellular developments and
the adaptiveness to changing demands. Motivated by, but also stimulating these
discussions, a number of stem cell models have been established that represent
stem cells as individual objects with inheritable and dynamically regulated prop-
erties which only exhibit stem cell functionality in the population context. Cellular
properties are continuously changing under the influence of environmental signals
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and are not restricted by the boundaries of an abstract compartmentalization. For
example, within such a concept the repopulation ability of a cell does not vanish
at once when the cell transits from the stem cell compartment to a progenitor
stage, but the the loss of function is gradual. This includes, that in a scenario
with many competitor cells, a particular cell might not contribute to long term
repopulation, whereas in a different situation with few competitors it could do so.

”Stemness” as a continuum parameter. The explicit conditioning on the
micro-environment (either by local interaction rules or by global information and
feedback loops) allows an adaptive control of the balance between self-maintenance
and differentiation, generally referred to as self-organization. The future develop-
ment of each cell depends on its current state and on the state of the surrounding
environment and can only be predicted in a probabilistic sense. These single cell
based models are particularly suited to account for the heterogeneity in clonal
development as it occurs in chimerism studies and clonal tracking experiments
(e.g. using retroviral markers). Moreover, the single cell-based structure allows
to study the consequences on the tissue level that result from of each cell and
can also evaluate the impact of changes of the local interaction rules on the tissue
level.

Building on the early conceptual works by Potten and Loeffler [1, 62] which
placed stem cell properties in the population context, the idea of “stemness” as a
continuous property was formalized by Loeffler and Roeder [46]. Inspired by the
special role of the hematopoietic niche for the maintenance of HSCs the model con-
cept assumes that stem cell development is directly influenced by each cell’s local
micro-environment, or more generally speaking, by the signaling context to which
a cell is presently exposed to. This simple assumption is outlined in Figure 3.3 in
which two abstract cell properties (A and B) are modulated in a contrary fashion
within two distinct signaling contexts. Subsequently, a mathematical formaliza-
tion of this concept has been developed by Roeder and Loeffler [33] to construct
a single cell-based model of hematopoietic stem cell organization in which the
cellular development is directly regulated by the cell’s micro-environment. The
assumptions of reversible binding and detachment from a niche-like environment
place the cells under the governance of two antagonistic regimes which is sufficient
to explain self-maintenance and differentiation of HSCs as a self-organizing pro-
cess. Since this model is used to accommodate the lineage specification dynamic
developed within this thesis it is presented in more detail in Section 3.4 at the end
of this chapter.

Another elegant approach to model stem cells as self-organizing, adaptive sys-
tems has been presented by Kirkland [34]. This work demonstrates that stem cell
organization can be sufficiently described in a continuum space explicitly exclud-
ing any kind of compartmentalization in discrete subpopulations. In this concept
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Figure 3.3.: Influence of the signaling context on cellular development.
Two abstract cellular properties (named A and B) are under the governance of
two distinct signaling contexts (named I and II). The signaling contexts, between
which the cells can actively change, modulate the properties A and B in a contrary
fashion.

cells are defined by continuous variables that describe functional and phenotypic
properties (such as repopulation potential or multipotency). Based on this idea,
cells can hardly be classified as ”stem cells” or ”non-stem cells” but can also
acquire possible states in-between. The variables change according to a set of
probability density functions which themselves depend on the current state of the
cell: cells with higher “stemness” cycle slower and have a smaller probability for
differentiation as compared to cells with reduced “stemness” (compare Figure 3.4).
In this concept, self-renewal is no longer a cellular features but necessarily refers
to a cell population.
These works have recently been complemented by an approach of Hoffmann,

Galle and Loeffler to described a population of stem and progenitor cells as a
probabilistic process that arises from cell proliferation and small fluctuations in
the state of differentiation [187]. These fluctuations are assumed to reflect ran-
dom transitions between different activation patterns of the underlying regula-
tory network and the fluctuation amplitudes are state-dependent and governed
by the cells’ micro-environment. The authors demonstrated that such as system
reproduces the balance between maintenance of the stem cell state and terminal
differentiation.
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Figure 3.4.: Phase space model of hematopoiesis.
Cells at the periphery (in the light orange to yellow area e.g. cell (a)) have a
high probability of moving out further towards more mature stages (white) but
a low probability for “de-differentiation” towards the center. In contrast, cells
close to the center (red area, e.g. cell (c)) have maximal “stemness” with slow
cycling and a reduced probability of moving towards the terminal cell stages at
the periphery. Cell (b) has intermediate characteristics. Picture taken from [34]
with kind permission from Mark Kirkland.

Stem cells as adaptive agents. A formal foundation for the concept of per-
ceiving cells as reactive agents, which underlies all the above mentioned models,
was recently provided by Theise and d’Inverno [174]. The authors argue that crit-
ical phenomena of the system only emerge if a sufficient number of reactive agents
are present. Moreover, self-organization of a complex adaptive system requires
interactions between the agents as well as a certain degree of non-determinism.
The authors demonstrate that the perception of stem cells as reactive agents is a
possible tool to relate the phenomena on the single cell level to the resulting popu-
lation dynamics of stem cells. In this sense the characteristics defining “stemness”
on the population level can possibly be translated to a set of rules on the single
cell level.
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3.3. Conceptual approaches on lineage specification

The mechanisms that regulate the maintenance of multipotency are closely re-
lated to the more general aspects of self-maintenance of a stem cell population as
outlined above. However, also in a historical context, the conceptual approaches
towards lineage specification have been discussed rather isolated from the ques-
tion of stem cell maintenance. Therefore, the following general overview about
concepts of lineage specification and their mathematical implementations is com-
pleted by a brief discussion on how these models integrate with the conceptual
ideas about stem cell self-maintenance.
On a rather simplistic level it is apparent that the transition from a multipotent

cell stage towards a functionally fixed cell type is ultimately coupled to a decision
process which favors one lineage at the expense of the others. The question remains
how this process of lineage specification is organized on the molecular level and
how it can be influenced by external queues. Furthermore, it is also not clear how
much flexibility is associated with the processes of lineage decisions. This in turn,
refers back to the discussion about reversibility of general stem cell characteristics
in Section 2.1 as well as in the above sections.

3.3.1. The concept of developmental landscapes

Due to the complexity of intracellular regulation in lineage specification the num-
ber of analytical approaches is limited. However, it is long recognized that pro-
cesses of lineage specification in adult stem cell systems have a close counterpart
in embryology where a zygote gives rise to a complete organisms composed of a
multitude of different tissues. In 1956, Conrad Waddington pictured this decision
sequence by a ball rolling down an incline with different branching ridges and
valleys [188, 189] (Figure 3.5). Whereas the valleys correspond to the different de-
velopmental options the ridges represent the distinctions between the tissue types.
This neat visualization of the process of lineage specification in development re-
ceived a comeback in the last years [190] and is now commonly used especially in
the discussions about reprogramming and induced pluripotency [191, 192, 193].
Although the building principles of a lineage specification process are already

well captured by this early visualization of a developmental landscape, the picture
deserves a critical interpretation and discussion. Starting from the principle as-
sumption that the phenotype of a cell is the direct result of the activity of the cell’s
genes and gene products it follows that lineage specification (i.e. the change in
the cell’s phenotype) is ultimately linked to a change in the underlying molecular
expression pattern. The question remains, which molecular components interact
with each other, how these interactions are characterized and how a robust and
self-stabilizing expression pattern of these components appears.
A larger number of theoretical works on the dynamics of such large interacting
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multipotent (stem) cell

lineage A lineage B lineage C lineage D

differentiated cell

Figure 3.5.: Lineage specification in the concept of state space.
The developmental landscape as suggested by Waddington [188, 189] provides the
background to understand lineage specification as a decision process in a high
dimensional landscape that arises as the consequence of complex intracellular in-
teraction network. A possible development is shown by the red arrows, alternative
options are indicated by the dashed arrows. Figure modified from [189].

systems are in the focus of current research for the conceptual understanding of
lineage specification. It is already evident that the valleys and ridges proposed by
Waddington [188] (compare Figure 3.5) do not correspond to physical structures or
potential energy landscapes as they are known from physics but rather represent
unstable and stable states of the cell’s underlying complex interaction network
[190, 194]. Such landscapes describing the probability for finding a cell in a certain
state can already be computed for smaller systems [92, 195] and provide very
helpful and intuitive interpretations of the underlying network dynamics.

3.3.2. The concept of state space

It should be pointed out explicitly that the network dynamics (i.e. changes in gene
expression and the existence of steady states) are determined by the particular
arrangement and strength of the network interactions. Assume for example that

43



3. Theoretical background: Conceptual and mathematical models

gene A represses gene B and that genes C and D are mutual activators. Given
that these interactions are fixed based on the promoter structure of the genes, only
certain expression patterns are possible while others are not. For example, A and
B cannot both be activated simultaneously if one inhibits the other; conversely,
C and D must both turn on if they are mutual activators. Interactions like these
limit the number of self-adapting expression states and determine how they evolve
over time. Given a certain stimulus the internal state of a cell might transiently
shift through various intermediate stages before it finally stabilizes in one of the
self-adapting expression states [196].
In a more formal description, every cellular component (gene transcripts, pro-

teins, soluble factors, etc.) within a certain cell can be represented as a dimension
in a high-dimensional state space. In such a state space each cell can be identified
by a vector S = {S1, S2, . . . , Sn} in which each component Si represents the con-
centration of a particular molecular component Xi. Given the general consensus
that the phenotypic appearance of a cell is the result of the molecular interactions
between all the genes, their transcripts, proteins, signaling pathways and other
intracellular components, this also implies that the dimensions of the state space
are not independent of each other. Such a complex, high-dimensional system of
interactions is most conveniently represented by a complex network in which the
nodes correspond to the different molecular components Xi whereas the edges
characterize their mutual interactions xij. It is now the supportive and repressive
nature of these mutual interactions xij leading to the emergence of patterns in
which certain components Xi are expressed while others are silenced. The ability
to maintain such an internal equilibrium is termed homeostasis whereas the sta-
bilized, self-adapting patterns are referred to as attractors of the network. On the
phenotypic level such a stable attractor can be associated with a certain cell type
(e.g. stem cells, mature cell types) being characterized by a certain characteris-
tic expression of molecular components and fulfilling particular functional tasks
[197, 198].
In the above interpretation, the picture by Waddington is a representation of

the intracellular attractor landscape and the developmental options between them.
However, there is a central, although fundamental question which is not captured
by the sketch: Is this attractor landscape fixed or is it changing in the course of
differentiation? In terms of the state space formulation the cell’s intrinsic state
is characterized by the vector of concentrations Si for each of the intracellular
components. However, it is the the matrix of all potential interactions xij that
actually shapes the attractor landscape and that determines how the cell state Si

develops within the state space. As the concept of the developmental landscape
is a simplification of a highly complex process, there is no unique answer on
whether this landscape is constant in time or not. In fact, the answer depends on
the assumptions and interpretations made for the underlying molecular network.
Two contrasting perspectives are outlined below:
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• The local view. In the local view the network contains only a limited
number of important molecular components for which the dynamic behavior
is subject to a quantitative analysis. The concentrations of other components
that are constant over time or that only change on long time scales are not
explicitly described as nodes of the network but are represented as (constant)
parameters. However, such parameters characterize the nature and intensity
of the interaction between two or more network components. As an example
one might think of transcription rates that can be described as functions of
DNA methylation patterns. If such patterns change on long time scales also
the depending transcription rates change slowly over time. As a consequence
of this interpretation quantitative (and qualitative) changes of the network
interaction ultimately alter the network dynamics and potentially modify
the attractor landscape.

As for the example of bistable switches, which is illustrated in more detail
below, it is the modification of a bifurcation parameter, commonly a gener-
alized transcription rate, which moves the system from a state with just one
attractor towards a state with multiple such attractors [110, 108]. Further-
more, it could be shown by studying boolean dynamics on larger networks
that modifications of the interaction rules can (although they do not nec-
essarily have to) lead to dramatic effects on the attractor landscape [199].
On the basis of these findings, the processes of differentiation and lineage
specification, which are evidently coupled to specific epigenetic changes and
are closely regulated from external signals, can be interpreted as alterations
of the developmental landscape.

• The global view. In contrast to the local view the global view represents
the concentrations of each and every relevant molecular component (chromo-
somes and genes, transcripts, proteins, receptors etc.) within the underlying
network structure. In this framework all the parameters that influence the
system behavior in the local view are internalized as additional nodes of the
network graph. In principle this approach can be applied to all external
influences as well (like concentrations of external cytokines and nutrition,
temperature etc.) leading to a significantly increased dimension of the state
space vector S.

It is the idea of the global view that interactions between any of the net-
work components are solely characterized by physical and chemical proper-
ties and do not involve any temporal dependence. As all external influences
and changes that occur even on slow time scales (e.g. epigenetic remodel-
ing) are already internalized within the network structure, the interaction
rates represent absolute and conserved properties. This, in turn, leads to a
fixed developmental landscape in which all possible attractors are already
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global viewlocal viewB CA developmental landscape

Figure 3.6.: Interpretations of the developmental landscape.
The developmental landscape in (A) are interpreted in the local view (B) and in
the global view (C). For three different time points a possible, two-dimensional
landscape model for the state space is provided. The actual cell state is repre-
sented by the red dot.

represented. However, as the number of interacting components is large, the
resulting landscape is diverse and the attractors are possibly scattered over
the whole state space. This view closely resembles the rigorous definition of
the a cellular state space first formulated by Kauffman [197, 200].

Coming back to the developmental landscape as it has been proposed byWadding-
ton, this picture can be interpreted in two different ways, outlined in Figure 3.6.
In the local view the attractor landscape changes as the interaction parameters
are functions of the time of differentiation (depicted as a sequence of pictures in
Figure 3.6(B)). However, it is a modulation of the landscape which drives the
cell state (depicted in red) into another (evolving) attractor while previous op-
tions vanish. In this interpretation, the developmental landscape shown in Figure
3.6(A) has to be interpreted as a time-ordered sequence of snapshots rather than
a fixed landscape.
In contrast, in the global view the landscape remains fixed (Figure 3.6(C)) and

only the trajectory of the cell in the simplified, two-dimensional state space is
a function of time. In this sense, there is a coexistence of multiple attractors
corresponding to the multipotent and the subsequently restricted developmental
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states, and differentiation is illustrated as a transition from one attractor towards
the next attractor potentially involving the decision between more than one op-
tion. It should be clearly stated that the low-dimensional representation in Figure
3.6(C) is insufficient to captures the complex, high-dimensional state space in the
global view but it illustrates the coexistence of several local attractors in a static
landscape.
Taking together it needs to be emphasized that the two different views on devel-

opmental landscapes are not mutually exclusive. In fact, the local view appears as
a low-dimensional projection of the global view. Therein some dimensions of the
global view (i.e. concentrations of certain molecular components) are collapsed
into interaction parameters of the network such as transcription and inhibition
rates. The preference for one or the other view should depend on the particular
problem in question.

3.3.3. Fluctuations and robustness

Even within a stable attractor of the state space the concentrations of the intra-
cellular components Si might fluctuate around the optimal state. Such fluctua-
tions occur naturally and are the results of small copy numbers, degradation and
diffusion processes within the cells (intrinsic noise) or spatial arrangements and
influences of the local micro-environment (extrinsic noise) [201, 202, 203]. Noise
effects can be further enhanced in non-linear systems [204].
However one needs to distinguish whether the “shape” of the attractor and

the noise amplitude are suited to induce a change of the attractor state or not.
Generally, small fluctuations do in most cases not lead to a change of available
attractors and thus do not significantly change the overall expression pattern and
the cells phenotype [205]. This feature is commonly referred to as robustness and
is illustrated by the width of the attractors in Figure 3.6.
In contrast, and most likely induced by extrinsic effects, fluctuations of sufficient

amplitude can also contribute to phenotypic variability. In fact noise induced
fluctuations are a possible stimulus to induce changes of the cell state and to shift
the cell into a different attractor (i.e. into another phenotype) [206, 207, 208, 209].
In the concept of developmental landscapes as it is illustrated in Figure 3.5,

the fluctuations do in principle enable the cells to move from one valley (i.e.
attractor) into a separate valley. The probability for such state changes depends
predominantly on the noise amplitude and on the “location” of the alternative
attractor. As outlined above, in the global view the picture of a low-dimensional
developmental landscape is oversimplifying as the alternative attractors might be
distant and separated through a rugged developmental landscape. In the local
view this translates into the question of whether a certain alternative attractor
coexists for a given parameter configuration or whether it needs to be recreated
by a changing parameter configuration e.g. encoding epigenetic remodeling.
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3.3.4. Reduction of complexity

The complexity of the state space representation of a cell including the charac-
terization of all the mutual interactions between the cellular components makes
a comprehensive approach to the cell intrinsic dynamic in the global view nu-
merically very challenging, in fact not feasible at the moment. However, it is
not just the feasibility, but also the availability of the particular data which lim-
its a global approach. Although the availability of high-throughput measures like
mRNA-microarrays allow to simultaneously determine the expression of thousands
of genes in a cell population, these methods are rarely adequate to characterize the
complex interactions between them. In the context of the cell’s state space, the
current state Si can be roughly determined by these methods but the interactions
xij remain unknown. Consequently a dynamic picture of the cells behavior in a
global state space can not be obtained.
In order to reduce this level of complexity for descriptive approaches, the whole

phenomena of intracellular regulation and lineage specification is more successfully
addressed in the local view. Here, one may roughly distinguish between two princi-
ple approaches: a phenomenological approach and a functional approach. Figure
3.7 outlines these principle perspectives. Whereas the cell on top is depicted with
different sets of competing and potentially interacting genes and gene products as
well as their mutual interactions (global view), the snapshots below refer to the
low-dimensional projections (local view). The phenomenological approach sum-
marizes the complex regulations within coregulated gene sets into different major
components and studies the interactions between them. Although this approach
misses the molecular details of the interactions within the components, it is suf-
ficient to address the general principles of developmental phenomena like lineage
specification and the temporal ordering of events. In contrast, the functional ap-
proach focuses on the interactions between certain key regulators, for which details
of the molecular regulation are available. Although this process can elucidate the
role of molecular switches for certain intracellular decisions, it captures just a brief
sequence out of the complex and temporally extended differentiation dynamic and
fails to embed these actions into a greater context. For both the phenomenological
and the functional approach a brief overview about selected models is provided
below.

3.3.5. Phenomenological models of lineage specification

Driven by the experimental findings on the separate differentiation of paired pro-
genitors using HSC [35, 27] Ogawa and Mosmann developed an early, mechanis-
tic approach to describe lineage specification [167]. From the observation that
the daughter cells gave rise to different colonies with varying contributions of
hematopoietic lineages, the authors concluded that the lineage potential is pro-
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functional approachphenomenological approach

local view

global view

Figure 3.7.: Levels of description.
The cell on top reflects the entire state space of a cell in the global view (grey
shaded area) with a multitude of interacting molecular components (e.g. genes,
transcripts, proteins, receptors etc.). The representations below illustrate different
variants of the local view. The left arm outlines the phenomenological approach
in which complex regulations within coregulated gene sets (marked with identical
colors) are summarized into different major components. In contrast, the func-

tional approaches (shown for the right cell) focus on interactions between certain
key regulators for which details of the molecular interactions are known.

gressively lost during differentiation. In particular, the authors assumed that a
multipotent progenitor cell undergoes multiple cell divisions in which the daughter
cells pass on a subset of the parents lineage potential. The decision of whether
the lineage potential had been restricted to a single lineage, a certain number
of lineages or the full potential of the parent, is characterized as stochastic (see
Figure 3.8). Although the model could conceptually account for the experimental
observations, it does not address the question how the stochasticity of the decision
process is intrinsically represented within the cell. Moreover, it is not convincingly
demonstrated why the process of lineage restriction is stringently coupled to the
decision process itself. It could well be the case that lineage restriction occurs
during the subsequent development of the daughter cells.

It is the particular merit of Stuart Kauffman [197, 200] who established the
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Figure 3.8.: Progressive restriction of lineage potential.
The sketch (adapted from [210]) illustrates the model first proposed by Ogawa and
Mosmann to describe lineage potential as a progressive loss of lineage potential
[167]. Starting from a multipotent stem cell shown on the left side, upon each
division the number of possible developmental options (indicated by the letters
within each cell) is randomly reduced until the daughter cell is finally committed
to a certain lineage (shown on the right side). The developmental options are
encoded as follows: n, neutrophil; m, macrophage; e, eosinophil; b, basophil; E,
erythrocyte; M, megakaryocyte.

theory of dynamically and self-regulating networks in the realm of modern molec-
ular biology. Using simplified, boolean network dynamics he and others [196, 199]
showed, that even highly complex networks finally converge towards a finite num-
ber of possible attractors. Typical phenomenological features of differentiating
cells could be recaptured by studying the number of possible attractors, their
basins of attraction and the robustness of the attractor states against perturba-
tions. Attributing different cellular phenotypes (e.g. undifferentiated or lineage
specific cell states) to the different attractors, the transition between them corre-
sponds to the process of differentiation. As Huang pointed out [205], the transi-
tion to another attractor requires a perturbation possibly involving multiple genes.
Such a perturbation might be initiated via a external regulatory stimuli that trig-
ger receptor mediated signals and often target a set of key regulators. The set of
affected genes and proteins that finally change their expression is defined by the
interaction network and might be the evolutionary result of the cell’s response to
appropriate environmental signals [205].

50



3.3. Conceptual approaches on lineage specification

In a sequence of papers Kaneko and coworkers studied the parallel existence
of multiple stable attractors using medium sized networks described in terms of
ordinary differential equations [211, 212, 213, 214]. Their modeling approaches
are based on the idea that each cell is characterized by the concentrations of
a set of chemicals which participate in a network of autocatalytic biochemical
reactions. Furthermore the internal chemical concentrations are influenced by the
gradient of chemical concentration within the cell, its surrounding medium as well
as neighboring cells. Kaneko et al. showed by a temporal evolution of the internal
cell states that the final attractors for each cell are highly depending on the initial
conditions and on the nature of the cell-environment interaction.
It needs to be mentioned that non of the above outlined approaches could suc-

cessfully integrate direct biological parameters into the particular quantitative
models. In spite of this, the particular class of models gives reason to assume
that stable attractors are a common feature of large dynamical networks as they
are observed for gene and protein interactions within a cell and that they are
appropriate representations of a cell’s internal state. In this respect the models
provide a phenomenological understanding about the connection between the ex-
istence of stable expression patterns in complex networks and their translation
into cellular phenotypes. The analytical studies on the basins of attraction and
on the robustness of the attractors provide insight into the building principles of
phenotypic heterogeneity and the stability of the phenotypes against minor and
major perturbations.

3.3.6. Functional models of lineage specification

In contrast to the phenomenological approaches there is another class of models
focusing on the functional understanding of the mutual interactions between key
regulators. Such interactions are typically studied for small networks with a focus
on rather well characterized components and their interaction dynamics.
It was not until the 1990s that the advances in the characterization of molecular

interactions led to the identification of certain key regulatory elements which in
turn opened the gate for mathematical modeling approaches of specific biological
systems and established the concept of molecular switches related to differentia-
tion and lineage specification. It has been shown that simple regulatory genetic
networks (intrinsically coupled by positive or negative interactions) can exhibit
different, separable stable attractors which are closely linked to different devel-
opmental options. The ability to change between these different stable states is
the defining criteria of a molecular switch. As a demonstrative example, Gard-
ner and colleagues presented a synthetic genetic toggle-switch in E. Coli [110]
(Figure 3.9). The switch, which is constructed from two repressible promoters in
a mutually inhibitory network and for which the authors also provide a simple
mathematical model, could be flipped by transient chemical or thermal induction.
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Figure 3.9.: Network with two mutual repressors.
The sketch illustrates a simple genetic network of two mutually repressive genes,
similar to the model for the toggle switch proposed by Gardner et al. [110].
Depending on the cooperativity of the interaction and strength of the interaction
parameters a and b the system can change from a monostable to a bistable regime.

The authors proofed the existence of parameter configurations in which just one
stable attractor exists (monostability) or, for changing parameters, in which two
such attractors exist (bistability).

With particular focus on hematopoiesis, the decisions of myeloid progenitors
to differentiate either into erythroid/megakaryocytic cells or into myeloid cells
(reviewed in [99, 215]) has been subject to different modeling approaches. It
is the mutual regulation between zinc finger factor GATA-1 and the Ets-family
transcription factor PU.1 that supports the idea of a molecular switch. A repre-
sentative example has been proposed by Roeder and Glauche [108] and is briefly
illustrated in Figure 3.10. A detailed analysis of the possible molecular interac-
tions between the two transcription factors revealed a rich manifold of possible
dynamical phenomena. Whereas in the case of low transcriptional activity the
system is characterized by a stable state in which both transcription factors are
equally expressed, increasing the transcriptional activity of the autoregulation of
GATA-1 and PU.1 leads to the emergence of different stables states that are char-
acterized by the dominance of either one of the two factors, thus revealing the
typical properties of a molecular switch. A sequence of corresponding attractor
landscapes is shown in Figure 3.11 illustrating this qualitative change in the num-
ber of attractors. In the bistable regime, the system is fixed in either of the two
attractors and a switch between these attractors requires an external perturbation.
In this interpretation, the bistable switch can be mapped onto the developmental
landscape outlined in Figure 3.5 in which the different attractors are separated by
the ridges in-between.

Supported by experimental results this PU.1-GATA-1 switch has been further
studied by Laslo et al. [109] and Soneji et al. [140]. Related switch dynamics have
been suggested for the differentiation of T-lymphocytes based on the interaction
of transcription factors GATA-3 and T-bet [216, 217]. In addition to the works on

52



3.3. Conceptual approaches on lineage specification

GATA−1 PU.1

PU.1GATA−1

u

k

ss

u

k

Figure 3.10.: Interaction network for transcription factors GATA-1 and
PU.1.
The sketch shows a possible configuration of the interaction network between
GATA-1 and PU.1 as discussed in [108] for a completely symmetric system with
following parameters: s - transcription rate of the autoregulation, k - inhibition
of transcription by the heterodimer, u - mutual activation (this process is most
likely indirect). Crosses indicate decay. As shown in [108] this interaction network
can be translated in a set of dimensionless ordinary differential equations.

bistable switches, Cinquin and Demongeot [218] and Foster and colleagues [219]
proposed more generalized, higher dimensional switches that facilitates decision
events between more than just two options.
Although the molecular description of intracellular interactions is most likely

the best way to finally achieve a global view on lineage specification in which all
interacting components are represented, the limited knowledge about the nature
of interactions but also the technical challenges to describe such highly complex
systems in an appropriately mathematical framework make this vision not yet fea-
sible. Even for the small-scale networks discussed above, many of the interaction
parameters are not accessible. However, taking the local view is not necessarily
a disadvantage but offers the ability to study complex systems in a bottom-up
approach, thus getting a notion about the functional role of different network
motifs.
For the example of the discussed molecular switches it is demonstrated that

external influences or changes in the general accessibility of the genes are not
encoded as additional network components but are attributed to the interaction
parameters (e.g. the transcription and inhibition rates s, u, k in Figure 3.10).
In this sense, the changes of these secondary parameters modify the attractor
landscape and induce switches between different stability regimes (e.g. mono- vs.
bistability). Such a behavior is a typical consequences of the local view.
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Figure 3.11.: Attractor landscape.
(A - C) show a sequence of attractor landscapes for different parameters of
the transcription rates s for the PU.1 - GATA-1 model introduced by Roeder and
Glauche [108]. The z-axis corresponds to the negative logarithm of the probability
for finding a cell at a certain position in the state space of PU.1 and GATA-1
concentrations. Thus, the attractor regions are indicated by the orange color.

3.3.7. Integration of lineage specification and self-maintenance

Although the phenomenological models of lineage specification fail to substantiate
the network topologies by experimental data, and the molecular networks are
limited to rather specific components, the whole body of evidence provides an
insight in how the process of lineage specification is potentially represented at
the molecular level. However, it is a defining feature of stem cell populations
to remain in an uncommitted state from which the lineage specification towards
different cell fates is still possible. This state of maintenance of multipotency is
closely correlated with the maintenance of the stem cell population itself. This
interrelation between multipotency and stem cell self-maintenance is not reflected
by any of the above model approaches.

In this context the question arises, how the attributes of a stem cell population
as being adaptive to changing demands and the options of flexibility and reversibil-
ity extend on the process of lineage specification. Furthermore, it is unclear how
the maintenance of the experimentally observed priming behavior (to low-level co-
expression of lineage specific, potentially antagonistic genes) is efficiently coupled
to the maintenance of the stem cell population and the corresponding environ-
mental cues.

Based on the idea that lineage specification is a competitive interaction be-
tween different lineage specific programs a comprehensive concept is developed
in the next chapter integrating the ability for lineage specification and the self-
maintenance of a stem cell population into a common conceptual framework.
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3.4. Roeder and Loeffler model of hematopoietic stem cell
organization

The single cell based model by Roeder and Loeffler [33] develops from the idea,
that stem cells have the ability to independently respond to a multitude of en-
vironmental signals. The cooperation of many such cells results in the overall
appearance of the tissue specific stem cell system.

The special role of the hematopoietic niche for the maintenance of HSCs has
already been outlined in Section 2.2. Building up on the idea that different con-
figurations of the cell’s local micro-environment propagate different signals and
developmental fates (see Figure 3.3) a quantitative model for the HSC system has
been developed. In this model the cells are in principle exposed to two contrary
signaling contexts. The first signaling context, termed A , is commonly associated
with the hematopoietic niche and supports cellular quiescence and the mainte-
nance of the repopulation potential. In contrast, the second signaling context,
termed Ω , is associated with the decoupling from the niche and supports prolif-
eration and loss of repopulation ability which finally leads to differentiation.

The model by Roeder and Loeffler [33, 220] describes each cell as an individual
object with a discrete set of characteristic variables which are updated for all cells
at discrete time steps typically measuring one hour. The actual status of a stem
cell (i.e. its position in the state space of the defining variables) is characterized by
its current signaling context (A or Ω ), its position in the cell cycle c (indicating the
cell is in either G1, S, G2, M or G0 phase) and its affinity a which quantifies the
propensity of a particular cell to reside in signaling context A . It is this affinity
a which is itself modulated by the action of the two signaling contexts and which
directly influences the transition probabilities. Whereas the non-proliferative cells
in A are maintaining or even regaining their affinity a up to an upper limit amax =
1, the proliferative cells in signaling context Ω gradually lose their affinity a. It
can be shown that the affinity a is a good indicator for the “stem cell quality”
as it approximates the cell’s ability to realize long-term system repopulation. An
overview of the model setup is provided in Figure 3.12.

Accounting for the presumed underlying complexity, transitions between the
two signaling contexts are described by a stochastic process. The probability of
switching depends on the actual value of a as well as on the number of cells in
the target signaling context. The transition probabilities are described by the
following sigmoid functions:

transition from A to Ω :

ω(a,NΩ) =
amin

a
· fω(NΩ) (3.1)
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Figure 3.12.: Model of HSC organization.
The model proposed by Roeder and Loeffler [33] is characterized by two different
signal contexts (A and Ω ). Cells can reversibly change between A and Ωwith
probabilities α and ω which depend on the cell numbers and the cell specific
affinity a (font sizes indicate the value of a for each cell). Whereas activated
cells in Ωundergo divisions and exponentially degrade their cell specific affinity
a with rate d, cells in A are quiescent and preserve/regain their affinity a with
rate r. Cells with affinity a < amin cannot change into A again and undergo final
differentiation (with and without proliferation).

and transition from Ω to A :

α(a,NA) =
a

amax
· fα(NA) (3.2)

Within these equations NΩ and NA refer to the cell numbers in signaling context
Ω and A , respectively. The parameter amin is an arbitrary, but numerically neces-
sary boundary to account for the fact that cells with a < amin have a significantly
reduced probability for transition into A but a high probability for transition into
Ω . In other words, cells with a < amin do hardly account for the maintenance of
repopulation ability within A and are thus referred to as differentiating cells.
The functions fω(NΩ) and fα(NA) are sigmoid functions of the type:

f(N) =
1

ν1 + ν2 · exp

(

ν3 ·
N

Ñ

) + ν4. (3.3)

Whereas the parameters ν1, ν2, ν3, and ν4 determine the shape of f , the pa-
rameter Ñ is a scaling factor for N . It is possible to transform the shape factors
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ν1, ν2, ν3, and ν4 into the more intuitive values f(0), f( Ñ2 ), f(Ñ), and f(∞) :=
limN→∞f(N). Details are provided in [47].

If a cell does not transit between the signaling contexts (with probabilities (1−ω)
and (1−α), respectively) the cell’s affinity a as well as the internal cell cycle clock c
are modified according to the following rules. For cells in A the affinity a increases
by a factor r, termed regeneration factor (r ≥ 1), in each time step until an upper
limit amax is reached. Since cells in A are assumed to be quiescent (G0 phase),
the cell cycle clock c is not updated. In contrast, cells in Ω decrease their affinity
parameter a by a factor 1/d in which d is the differentiation constant (d > 1). The
cell cycle clock c is increased by one. If the cell cycle clock c equals the length of
the cell cycle τc, a division is performed, in which the parental cell is replaced by
two identical copies of it. Only the cell cycle clock has been reset to c = 0.
The phases of the cell cycle are defined in terms of the cell cycle clock c. For

cells in Ω a G1 phase of time τG1 is followed by a S phase of time τS and a G2/M
phase of time τG2/M . Generally it holds τc = τG1 + τS + τG2/M . Transition from
Ω to A is restricted to cells in G1 phase. However, changing back into Ω the cell
cycle clock c is set to the beginning of S phase.
The differentiating cells with a < amin remain in Ω , and continue to divide

throughout a proliferative phase with a characteristic cell cycle time, followed by
a precluding maturation phase without further amplification. Finally, mature cells
are removed from the system to reflect their limited life span.
Further details about the numerical implementation are provided in [47] as well

as in the Appendix B.

The Roeder and Loeffler model is a successful example of how an flexible and
reactive view on cellular development can be put into a mathematical context and
provide insight into potential regulations on the cellular as well as on the tissue
level. The model has been successfully applied to phenomena of clonal competition
[221], asymmetric stem cell fates [183] and chronic myeloid leukemia [220].
From a conceptual perspective there are two limitations of the model. First, the

transition functions for each cell are based on a global information (the absolute
cell number within each signaling context) rather than on a local density infor-
mation. However, it could be shown by d’Inverno and Saunders (publication in
revision) that within a spatial structure the global information can be exchanged
by a local one (based on the local concentration of a niche-derived marker sub-
stance) without any general impact on the system dynamics. Second, although the
model accounts for the output of differentiating cells the mechanisms of lineage
specification remain illusive. Within the next chapter a mathematical model for
the description of lineage specification is presented which also puts the processes
of maintenance of repopulation ability and multipotency into a common context.
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4. Methods I: Modeling the lineage specification
of HSCs

Within this chapter a catalog of experimentally and conceptual criteria is formu-
lated which is subsequently used to motivate a new model of lineage specification.
Generally the model should

• describe lineage specification as a dynamically regulated, temporally ex-
tended and potentially reversible process that integrates in the concept of a
self-organizing stem cell system.

• extend the existing model of hematopoietic stem cell self-renewal and differ-
entiation to incorporate the aspects of lineage specification.

• consistently explain a variety of experimentally observed phenomena.

• be as simple as possible.

After specification of the model assumptions, a formal description of the math-
ematical representation is provided. A sensitivity analysis of the model and a
comparison to experimental results is provided in Chapter 5.

4.1. Catalog of critical phenomena

Based on the phenomenology of lineage specification introduced in Chapter 1 as
well as the biological and conceptual background outlined in Chapters 2 and 3,
the central aspects of the biological process can be summarized into the following
catalog of criteria that need to be covered by the proposed model:

Lineage commitment (C1).

• Starting from multipotent stem or progenitor cell, lineage specification is
characterized as a progressive restriction in lineage potential, finally giving
rise to functionally restricted, mature cells (cf. Section 2.3.1).

• Experimental results about the lineage contribution of single hematopoietic
progenitor cells [26, 222] serve as a quantitative measure for this criterion.
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Generation of diversity (C2).

• Different mature cell types are generated through the process of lineage
specification. Candidate mechanisms for the generation of this phenotypic
diversity are cell intrinsic fluctuations caused by different sources of noise
(cf. Sections 2.3.1 and 3.3.3).

• Phenotypic diversity is estimated using experimental results about the lin-
eage contribution of paired hematopoietic progenitor cells [27, 222].

Temporal extension and reversibility (C3).

• The process of lineage specification is not an “all-or-none” decision but is
characterized as a progressive restriction of lineage potential with temporal
extension. This includes aspects of reversibility which, depending on the
state of commitment and the particular environmental conditions, may be
more or less likely (cf. Sections 2.3.2 and 2.3.3).

• Time course data on the in vitro differentiation of a particular mouse cell
line is used to study these temporal effects.

Regulation of lineage specification (C4).

• Lineage specification is regulated on the level of individual commitment
decisions (instructive) or by means of selective survival of preferred lineages
(selective). Such an adaptive regulation is required on the population level
for both scenarios even though individual lineage decisions might not be
predictable on the single cell level (cf. Section 2.3.2).

• The aspects are discussed using data on the in vitro differentiation of a
mouse cell line.

Priming (C5).

• On the molecular level, the uncommitted state is characterized by a coex-
pression of many, potentially antagonistic genes and transcription factors
(cf. Section 2.3.2). In contrast, differentiated cell types show a certain typi-
cal gene expression pattern supporting their functional requirements. In this
sense, lineage specification is perceived as a process that shifts gene expres-
sion from the undifferentiated coexpression state towards the dominance of
a certain pattern.

• Due to the phenotypic perspective of the model these aspects are only veri-
fied in a qualitative manner.
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4.2. The intracellular lineage specification model

The maintenance of HSCs is largely governed by the action of hematopoietic
niches. It has been illustrated in Section 2.2 that the protective action of a par-
ticular spatial micro-environment preserves a fraction of cells in an uncommitted,
mostly quiescent state with exceptionally high repopulation potential. In contrast,
cells that are not under the tight regulation of the hematopoietic niches progres-
sively lose their repopulation potential and undergo terminal differentiation.
On a conceptual level it has been shown by Roeder and Loeffler that the inter-

play of two, rather antagonistic environments is sufficient to explain the balance of
stem cell maintenance and differentiation in the context of a self-organizing system
(cf. Section 3.4). Whereas one such environment promotes stem cell maintenance
the other one promotes differentiation and the loss of stem cell function. It is the
adaptive ability of the cells to change between the two environments that finally
leads to the establishment of a dynamically stabilized stem cell pool which also
gives rise to a population of differentiating cells.
Coming back to the observation that stem cells are defined as uncommitted,

multipotent cells with high regenerative potential (cf. Section 2.1) it is also com-
monly perceived that the lineage commitment of HSCs is closely correlated with
the loss of regenerative potential. Although this correlation does by no way imply
a functional identity between lineage commitment and loss of regenerative poten-
tial, it suggests that the two distinct processes are at least regulated by correlated
mechanisms. Following this line of argument it is reasonable to assume that not
only the process of stem cell self-maintenance but also the process of maintenance
of multipotency can be explained in the context of two antagonistic environments.
For the particular situation this means that the two micro-environmental config-
urations impose different control regimes on the process of lineage specification:
whereas a regressive control regime maintains multipotency it is the role of a
dissipative control regime to facilitate lineage commitment.
The antagonistic action of a regressive and a dissipative control regime is il-

lustrated in Figure 4.1, in which the complex interaction of potentially relevant
genes and gene products are depicted by a simple, intracellular network graph.
Assuming that the uncommitted state is characterized by the low-level coexpres-
sion of many, potentially antagonistic genes, lineage commitment is characterized
by the up-regulation of a certain lineage specific subset of genes while others are
down-regulated. In this sense, the coexpression is maintained in the regressive
control regime, whereas the dominance of one subset of genes is established in
the dissipative control regime. Changes between the control regimes are required
in order to allow for an adaptive and dynamically stabilized system. However,
such changes do also imply that reversible developments in the process of lineage
specification are generally possible.
A number of simplifications are necessary to reduce the complexity of the un-
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regressive control regime dissipative control regime

Figure 4.1.: Network dynamics under two control regimes.
Simplified representations of the state space S are depicted for a particular cell
(illustrated by an intracellular interaction network). Different, coregulated com-
ponents (such as genes, transcription factors, receptors) that are specific for one
lineage are depicted with the same color (symbol size corresponds to the relative
expression). In the dissipative control regime there is a clear tendency for the up-
regulation of one (in this case the “blue”) coregulated cluster at the expense of
the others (directed movement in the state space). In contrast, the regressive con-

trol regime supports a leveling of the expression states of the three clusters with
moderate fluctuations and reversible changes (undirected movement in the state
space). The cells obey the principle ability to change between the two control
regimes (dashed arrows).

derlying interaction network governing the complex molecular dynamics of lineage
specification and translating it into a mathematically feasible problem. Primar-
ily, it is assumed that all signals and regulators that are specific for one common
lineage fate are integrated in a single generic measure, called lineage propensity.
This means that the action of different control regimes is not described on the
level of individual genes but summarized as the combined expression of coreg-
ulated, lineage specific regulatory components (i.e. genes, transcription factors,
surface factors, receptors and signaling pathways) that are representative for a
certain cell fate. The level of the particular lineage propensity represents the po-
tential of a cell to develop into the corresponding lineage. The scheme in Figure
4.1 translates into a simpler version as depicted in Figure 4.2.
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regressive control regime dissipative control regime

Figure 4.2.: Simplified network dynamics.
Coregulated clusters of molecular components are summarized in a single, generic
measure termed lineage propensity (indicated by the symbols). The overall dy-
namics within this low-dimensional state space representation remain the same as
in Figure 4.1.

It is now possible to visualize the action of the control regimes in a simplified
state space diagram (Figure 4.3). For the example of three competing lineages,
which are assigned to the axis of a 3-dimensional diagram, each point in the
state space refers to a triplet of lineage propensities. The temporal development
is consequently depicted by a trajectory as a sequence of such points. In this
state space, the regressive control regimes leads to trajectories close to the origin,
characteristic for low and balanced lineage propensities, whereas the dissipative
control regime drives the trajectory along one of the axis, indicating a dominating
lineage propensity while the others are suppressed.

Although extensive effort has been made to reveal the interaction between cer-
tain competing lineage specific genes and gene products many connections remain
vaguely characterized and the resulting network dynamic can only be perceived on
a very coarse scale. Therefore it is proposed to apply a simple interaction process
acting on the level of the lineage propensities in order to understand the pheno-
typic changes in the course of cellular differentiation. In particular, it is assumed
that the interaction is governed by a mutual competition process between all such
propensities in which every gain (or loss) in a particular lineage propensity will
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control
regime

dissipative
control
regime

regressive

Figure 4.3.: Simplified network dynamics in a state space diagram.
In the state space diagram each dimension corresponds to one lineage propensity.
A possible trajectory is indicated by the black line. Whereas in the regressive

control regime the propensities are kept at an almost equal level, the dissipative

control regime supports the dominance of one of them. This is an alternative
representation to Figures 4.1 and 4.2.

lead to the reduction (or increase) of the remaining propensities. In order to ac-
count for the complexity of lineage development the competition process involves
a stochastic element. This implies that the precise outcome of a particular lin-
eage specification process is unpredictable. However, the overall fractions of cells
committed to the cell fates in questions can still be manipulated on the level of
cell populations.
The mutual competition process can act in two distinct facets to represent the

different actions associated with the control regimes outlined above. In simple
words, it is assumed that in the regressive control regime the competition process
leads to the maintenance of the low-level coexpression (priming) by penalizing
deviations from the mean expression level, while in the dissipative control regime
the dominance of one or the other lineage propensity is promoted (commitment)
by enhancing the occurring deviations.
The above arguments lead to a catalog of formal assumptions on which the

mathematical formalization is based:

• Coregulated, lineage specific components (e.g. genes, transcription factors,
receptors) are summarized into lineage propensities. Each lineage propensity
represents the potential of a cell to develop into the corresponding lineage.

• Interactions between the lineage propensities are represented by a stochastic
competition process with different configurations for the regressive and the
dissipative control regime.
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• The lineage propensities are described as relative values (normalized to
unity). This means that the gain (or loss) in a particular lineage propensity
will lead to the reduction (or increase) of the remaining propensities.

• The lineage propensities represent cellular features that are inherited to the
daughter cells. Inheritance of the lineage propensities is symmetric to both
the daughter cells.

• The outcome of a particular lineage specification process can only be pre-
dicted in a probabilistic sense. The overall outcome on the cell population
level can be either regulated by modifying parameters of the intrinsic com-
petition process or by a positive selection for cells with certain patterns of
their lineage propensities.

4.3. Mathematical representation of the intracellular
model

Amathematical formalization is necessary in order to study the quantitative model
behavior under the set of stated assumptions.

4.3.1. Lineage specification as a cellular property

The lineage specification state of a model cell at any given time point is character-
ized by the actual levels of a number N of different lineage propensities denoted
by a vector x(t) = (x1(t), x2(t), ..., xN (t)). N represents the number of different
lineages in which the cell can potentially differentiate. The propensities xi, which
can take values between zero and one, represent relative propensity levels for the
development into the N possible lineages. In other words, the lineage propensity
vector x(t) is always normalized to 1 (

∑

i xi(t) = 1).

4.3.2. Dynamics of the competition process

The stochastic competition process, which is modeled on a discrete time scale
(typically measuring one hour), is organized as a three step process.

• In the first step of the competition process, one lineage propensity xi

is randomly chosen for the update procedure. Herein, the probability P for
choosing a particular lineage i equals its propensity xi(t):

P (i) = xi(t) (4.1)
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• In the subsequent, second step of the competition process the chosen
lineage propensity xi(t) is updated according to

xi(t+ 1) = xi(t)(1 +mi) (4.2)

whereas the other propensities remain unchanged in the first step. The
general idea of this update procedure is inspired by a so called Pólya urn
model (see Appendix A.1).

The lineage specific reward for the randomly chosen lineage i is defined as a
function mi = fm(xi(t)). For all other lineages j the reward is set to mj = 0.
The parameterization of the particular reward functions for each individual
lineage is the primary target to manipulate the overall system dynamics.
For the update, two different control regimes are assumed depending on the
micro-environmental context the cell is actually exposed to and which are
characterized by qualitatively different reward functions:

Regressive control regime: Deviations between the chosen lineage propen-
sities xi and a common mean propensity level are modulated by positive
or negative rewards mi, respectively. The reward function can either
be described by a linear function of the type

mi = fm(xi(t)) = bixi + ni (4.3)

with negative slope (bi < 0) and a root at xR = −ni/bi or, alternatively,
by a sigmoid function of type

mi = fm(xi(t)) =
−σisi(xi − xR)

√

1 + (si(xi − xR))2
. (4.4)

This sigmoid function is defined by the root xR, the steepness parameter
si and the saturation parameter σi. The root at xR should in both cases
be chosen such that xR ≈ x̄ = 1/N in order to get convergence to the
mean propensity level x̄ = 1/N . In this setting the rewardmi is positive
for xi < xR and negative for xi > xR. Examples of the reward functions
are shown in Figure 4.4(A).

The linear reward function in equation (4.3) is suitable in many cases.
However, for large deviations of the chosen lineage propensity xi from
the mean propensity level x̄ = 1/N the reward could potentially fall
below mi = −1. This, in turn, leads to negative lineage propensities in
the update function in equation (4.2) which are not defined. In order to
prevent this case a lower limit for the linear reward has been introduced
at mi = −0.5.
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Figure 4.4.: Reward functions mi = fm(xi(t)) for the two control regimes.
(A). For the regressive control regime a linear reward function (given in equation
(4.3)) with slope bi = −1 and three examples of sigmoid reward functions (given
in equation (4.4)) are shown with parameters xR = 1/3, si = 1/σi and σi =
0.1, 0.05, 0.025. (B). Three examples of linear reward functions (equation (4.5))
are shown for the dissipative control regime. Parameters are ni = 0.1, 0.05, 0.025.

Alternatively, an appropriate sigmoid function can be used as given
in (4.4). Particular examples are shown in Figure 4.4(A). Taking the
second derivative of equation (4.4), it can be shown that the maximum
slope (occurring at the root point xR) is given as bi = −σisi. For
the three examples illustrated in Figures 4.4 the steepness is set to
si = 1/σi. It follows that the slope for all three examples is bi = −1 at
the root point xR. Therefore the functions differ only in their saturation
level σi.

Dissipative control regime: The chosen lineage propensity xi is always
enhanced by lineage specific, positive rewards mi. In the simplest case
a constant reward is chosen, resulting in a linear reward functions of
the type

mi = fm(xi(t)) = ni (4.5)

These functions have zero slope and are restricted to the positive plane
(ni > 0). This way mi ≡ ni is independent of xi (Figure 4.4(B)). This
leads to increasing divergence from the mean propensity level x̄ = 1/N .
The preferential update of lineages with high propensities (due to the
coupling of update probability and actual lineage propensity in the first
update step), ultimately leads to the dominance of one lineage over the
others.

• In the final, third step of the competition process, the lineage propen-
sity vector x(t) is normalized to unity. This normalization accounts for the
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concept of antagonistic interaction between different lineages: if one propen-
sity is up-regulated, the other ones are (relatively) down-regulated and vice
versa. It can be shown mathematically that this renormalization can be
interpreted as a general decay term acting on all lineage propensities. For
further details the reader is referred to Appendix A.2.

Taken together, the complete update procedure reads as:

x(t+ 1) =
1

Cn
x(t)(1 + m̄(t)) (4.6)

in which m̄(t) corresponds to the vector of lineage specific rewards which is recalcu-
lated at every time step t. The individual values are generally set tomj = 0 except
for the updated lineage i which has been chosen with probability P (i) = xi(t).
For the updated lineage mi = fm(xi(t)) is calculated according to the correspond-
ing control regime as described in equations (4.3) to (4.5). The normalization
constant Cn accounts for the subsequent normalization of the lineage propensity
vector x to unity. In particular, Cn is given as

Cn =
∑

j∈{1...N}

xj(t)(1 +mj) = 1 +mi (4.7)

in which mi corresponds to the individual reward of the updated lineage i.

Correlations between lineages. As outlined in Section 2.3.1 certain lineage
fates are more closely related than others. For example, it has been observed
that the development of granulocytes and macrophages is often closely correlated,
whereas similar effects are less frequent among other cell types. Since this phe-
nomenon is caused by common developmental pathways, such a correlation in the
modeling approach is reflected by a functional coupling of the particular lineage
propensities. Technically this is implemented as follows: Given there is a corre-
lation between any two lineages propensities, say i and j, the update procedure
is extended. If lineage i is chosen for the update process, xi is updated according
to the update function in equation (4.2). However, at the same instance also the
correlated lineage j undergoes a modified update procedure: the propensity xj is
simultaneously updated according to xj(t+1) = xj(t)(1+γijmj). The parameters
γij characterize the correlation and are considered between −1 < γij < 1 (param-
eter values γij < 0 account for negative correlations). A particular application is
provided in Section 5.4.1.

4.3.3. Phenotypic mapping

In the model one needs to decide how changes of the intracellular state correspond
to changes in the phenotype of the cells. Such a mapping is necessary to compare
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Figure 4.5.: Phenotypic mapping.
The bar indicates the lineage propensity x∗i of the dominating lineage. According
to this value and the threshold values xcom1/2 the cell is classified as uncommitted,

early or finally committed cell.

the results of the modeling approach to experimental data which typically detect
phenotypic changes during the course of differentiation.
For the particular mapping, it is assumed that the phenotype of an individ-

ual cell is characterized by its highest actual lineage propensity xmax = maxi xi.
The lineage i for which holds xi(t) = xmax is termed the dominant lineage.
Subsequently this propensity is denoted as x∗

i (t). For a dominant lineage with
x∗
i (t) < 0.5 the assignment should be handled with care since potentially more

than one lineage propensity can have closely similar values.
According to the lineage propensity of the dominant lineage x∗

i (t) the cells
are classified in comparison to a threshold value xcom1 as undifferentiated cells
(x∗

i (t) < xcom1) or as cells committed to lineage i (x∗
i (t) > xcom1). If further states

of commitment can be defined phenotypically it might be useful to introduce a
further class of cells with a second threshold value xcom2. The simple sketch in
Figure 4.5 illustrates such an example with a secondary distinction in early and
late committed cells.
It should be clearly stated that the specification of the threshold values xcom1/2

is used solely for the phenotypic mapping of model results to experimental data
and does not imply the irreversibility of the commitment decision. However, the
probability for a change of the dominant lineage decreases with increasing values
of the propensity xi (see analysis in Section 5.1.2).

4.3.4. Regulation of lineage specification

Conceptually there are two different mechanisms for the regulation of the outcome
of a lineage specification process. Whereas the biological background has been
discussed in Section 2.3.2, a conceptual placement is provided below.
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Lineage specification as an instructive process. The shape of the reward
functions fm defined in equations (4.3) to (4.5) is a suitable parameter for
the regulation of the lineage specification process. In particular, the constant
reward in the dissipative regime fm(xi(t)) = mi = ni is especially sensitive
to influence the final lineage commitment as the choice of different values ni

for different lineages i skews the probability for their occurrence. A detailed
sensitivity analysis is provided in Section 5.1 of the next chapter.

Although, cell death might occur in this scenario, it generally does not have
a regulating function and affects all cells in a similar fashion (i.e. back-
ground cell death with equal intensity). Therefore, the regulation of lineage
specification is solely attributed to the manipulation of the reward functions
fm. As this is considered to be an instructive process, mediated e.g. by
the action of lineage specific cytokines, the whole process is referred to as
instructive lineage specification.

Lineage specification as a selective process. In the case that the lineage spec-
ification process outlined in Section 4.3.2 has no intrinsic skewing (i.e. the
reward functions fm are identical for all lineages i) all N possible lineages are
generated with the equal probabilities. Therefore a regulation of the fraction
of cells in each lineage can only be achieved by the process of selective cell
death. Depending on the action of a supportive or permissive environment
(e.g. lineage specific cytokines, feedback regulations) the survival of certain
lineages is propagated while other lineages are not supported and undergo
cell death.

As the regulation of the fraction of cells in each individual lineage is solely
regulated by selective survival signals and targeted cell death, the process is
referred to as selective lineage specification.

This conceptual approach assumes cell death occurrence in two principle mean-
ings, namely as a general effect occurring in all cells (background cell death) or as
an effect that is coupled to certain cellular properties (selective cell death). The
translation into the model concept of lineage specification is outlined below:

Background cell death. Background cell death is defined as unspecific cell death
process acting on all cell types irrespective of their current state.

Technically, the occurrence of cell death is modeled as a stochastic process.
The probability for a cell to undergo cell death in any given update step,
referred to as ΦB, is given as:

ΦB = φ (4.8)
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Figure 4.6.: Cell death intensities Φ.
The probability for cell death during one update step Φ is shown as a function of
the dominating lineage propensity x∗i (t). (A). For the background cell death ΦB

remains constant. (B). For the selective cell death ΦS is defined by lineage specific

step functions (indicated by the colors). Without loss of generality xdeath/highi = 1
for all i.

Here, φ is a general and constant cell death intensity which does not depend
on the lineage propensities x(t) (see also Figure 4.6(A)).

Selective cell death. In contrast, the selective cell death does not act equally on
all cells but cells with certain dominant lineages are primary targets whereas
cells with other dominant lineages are spared. In this sense, the occurrence
of cell death for a particular cell depends explicitly on its actual lineage
propensities x(t).

Again, the occurrence of cell death is modeled as a stochastic process. How-
ever, the probability ΦS(t) that a cell undergoes cell death in a given time
step t is now described as function of the dominating lineage propensity
x∗
i (t). In the most simple approach ΦS(t) is defined as a step function of the

form
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ΦS(t) =

{

φi for (xdeath/low
i < x∗

i (t) < xdeath/high
i )

0 else
(4.9)

In this case, the probabilities φi as well as the boundaries xdeath/low
i and

xdeath/high
i are individual parameters for each lineage i. Choosing a higher

value of φi > φj leads to an increased cell death probability for cells with the
dominating lineage i as compared to cells with dominating lineage j. In this
sense, it is the propensity of the dominating lineage x∗

i that further specifies
equation (4.9). Typical curves for the cell death intensities ΦS are provided
in Figure 4.6(B).

Practically, the lower bound for the action of the selective cell death is chosen
such that xdeath/low

i > 0.5. Only in this case the definition of a dominant
lineage is robust against small perturbations 1. Similar restrictions apply for
the upper bound xdeath/high

i . As it is unlikely that an initially unsupported
lineage has better survival chances later in development, the upper bound
for the action of the selective cell death is generally set to xdeath/high

i = 1.

Integrating the concepts of cell death in the mathematical and numerical for-
mulation of the lineage specification model, the three-part update procedure in-
troduced in Section 4.3.2 is complemented by one of the above scenarios for the
occurrence of cell death. Consequently the scenarios of instructive and selective
lineage specification are summarized as follows:

Instructive lineage specification.

• lineage specific reward functions fm(xi) skew the intrinsic lineage
decision

and

• background cell death with intensity ΦB acts on all cells without
regulation of the lineage contribution

1For any lineage propensity xi < 0.5 two or more lineages can have closely similar values, even
fluctuating around a certain common mean value. In this case the dominant lineage would
change frequently between subsequent update steps.
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Selective lineage specification.

• identical reward functions fm(xi) for all cells lead to balanced lineage
decisions

and

• selective cell death with intensity ΦS regulates the final lineage con-
tribution

4.4. Integration of lineage specification in the model of
HSC self-maintenance

The intracellular lineage specification dynamics described above are defined un-
der the control of two antagonistic control regimes. Following the stated criteria
that reversible developments are generally possible, transitions between the re-
gressive and the dissipative control regime (and vice versa) need to be included in
a comprehensive model of HSC organization.
The previously proposed model of HSC organization introduced by Roeder

and Loeffler (compare Section 3.4) describes adaptive and self-organizing HSC
self-renewal in the context two, structurally different and antagonistic micro-
environmental conditions: one promoting cellular quiescence and maintenance of
the self-renewal ability (signaling context A ), the other promoting proliferation
and loss of self-renewal ability (signaling context Ω ).
It appears as a logical consequence to extend this idea of micro-environmentally

directed development on the dynamics of lineage specification. In particular, it is
proposed that the two signaling contexts A and Ω also impose contrary effects on
the intracellular lineage specification dynamics of each individual cell by

• Coupling the dissipative control regime to signaling context Ω .

and

• Coupling the regressive control regime to signaling context A .

Induced by this superposition of regulating mechanisms, cells in A preserve the
uncommitted state and simultaneously maintain their ability to act as stem cells.
Furthermore, the processes of lineage commitment is correlated with the loss of
self-renewal ability in signaling context Ω .
Technically, the cellular properties defined in the original model of HSC self-

renewal outlined in Section 3.4 (i.e. attachment affinity a, position in the cell cycle
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Figure 4.7.: Extended model concept.
(A). The general model layout and the parameters correspond to Figure 3.12.
Upon integration of the lineage specification dynamics the cells now acquire a
particular lineage during differentiation in Ω (indicated by the change in shape
and color). (B-E). Time courses of the lineage propensities x for individual cells
of interest. (B). The non-proliferative, stem cell supporting signaling context
A hosts multipotent cells which are characterized by the balanced low level co-
expression of the lineage propensities. (C). Due to dissipative control regime in
signaling context Ω the balanced coexpression is upset and one lineage propen-
sity is expanded at the cost of the others. (D). Continuation of the process in
which the particular factor manifests the lineage decision and identifies the cell as
committed (x∗i > xcom). (E). Intracellular development of a cell which has been
recaptured into signaling context A . Here, the regressive control regime counter-
acts the differentiation process and reestablishes the typical priming pattern.

c and the affiliation to either the signaling context A or Ω ) are now extended
to incorporate the vector of lineage propensities x(t) = (x1(t), x2(t), ..., xN (t)).
During the sequential processing of each cell at the discrete time steps of the
original model, the cell’s lineage propensities x are additionally updated according
to the dynamics of lineage specification outlined in Section 4.3. Depending on the
current signaling context A or Ω , either the regressive or the dissipative control
regime is applied for the update procedure.
The transitions between signaling contexts A and Ω (and vice versa) are still
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governed by the functions defined in equations (3.1) - (3.3). These functions
depend only on the number of cells in the target signaling context and on the
cell’s individual affinity a, but they do not explicitly depend on the cell’s lineage
propensity x(t). However, as the dynamics of lineage specification are functionally
integrated in the model of HSC self-renewal as outlined above, there is a close
correlation between a cell’s affinity a and its lineage propensity x.
A comprehensive illustration of the extended model concept is shown in Figure

4.7. As the intrinsic dynamics of lineage specification are difficult to illustrate,
typical time courses of the lineage propensities x for individual cells of interest
are shown below the main graphic.
Further details of the necessary changes to the numerical program structure of

the Roeder and Loeffler model are provided in Appendix B. For details on the
implementation of the novel model of lineage specification the reader is referred
to Appendix C.
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5. Results I: Dynamics of lineage specification

The first part of this chapter provides a general overview of the dynamic behavior
of the proposed model of lineage specification including a detailed description of
the two control regimes and the system’s response to parameter changes. The
second part presents a range of experimental situations to which the model has
been applied.

5.1. Lineage specification in the regressive and the
dissipative control regime

In order to understand the rich dynamical features of the lineage specification
model it is necessary to illustrate the behavior for the regressive and for the
dissipative control regime separately. An integrated view of the extended stem
cell model including both the aspects of self-renewal and lineage specification is
provided at the end of the section.

5.1.1. Dynamics in the regressive control regime

General behavior In the regressive control regime the system is characterized
by a convergence of the lineage propensities xi towards their mean propensity
level x̄ = 1/N . This is facilitated by the reward functions (given in equations
(4.3) and (4.4)) which penalize deviations from the mean propensity level. Given
that the root of the reward functions xR coincides with the mean propensity level
x̄ = 1/N , a positive reward (mi > 0) is imposed in case that the propensity of
the chosen lineage is below the mean level of the root xi < xR = x̄ and a negative
reward (mi < 0) is imposed in the contrary case (xi > xR = x̄). Following the
update procedure outlined in Section 4.3.2 the individual propensities approach
the mean propensity level xi → x̄ = 1/N with increasing time. Typical examples
of the resulting trajectories are shown in Figure 5.1 in which the dynamics of
convergence are shown for different independent realizations.
Starting from a system in which one lineage propensity dominates over the

others, it appears that the convergence towards the mean coexpression level x̄
is a suitable measure to characterize the dynamics of the lineage propensities x
in the regressive control regime. Technically, for each individual trajectory the
time point is recorded when a lineage propensity xi passes a certain threshold
xt. Time averages for different individual threshold values are obtained separately
for each lineage i. A so called convergence curve is obtained by connecting these
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Figure 5.1.: Trajectories in the regressive control regime.
(A - C). Typical trajectories (lineage propensity xi vs. time) for a system of three
interacting lineages with initial values x(t = 0) = {0.8, 0.11, 0.09}. Parameters of
the sigmoid reward function in equation (4.4) are set to σi = 0.05, si = 20, and
xRi = 1/3 for i = 1, 2, 3. (D). Characteristic convergence curves averaged over
10000 independent trajectories for the dominating lineage 1 (red) and for the two
competing lineages 2 (green) and 3 (blue). Threshold values for the convergence
curves (indicated by the squares) are set to xt = {0.75, 0.65, 0.55, 0.45, 0.35} for
lineage i = 1 and xt = {0.12, 0.17, 0.22, 0.27, 0.32} for lineage i = 2, 3. Error
bars indicate the interquartile range.

time averages for several threshold values. These convergence curves characterize
the averaged temporal development of the convergence process for each individual
lineage i and are used throughout this section to illustrate the system behavior in
the regressive control regime. Examples are shown in Figure 5.1(D) in which the
characteristic convergence curves are averaged over 10000 independent simulation
runs in which the initial values of the lineage propensities are set to x(t = 0) =
{0.8, 0.11, 0.09}. Details of the simulation procedure are provided in Appendix
D.1.
The speed of convergence critically depends on the shape of the reward func-

tion, but also on the number of competing lineage propensitiesN . In the simplified

78



5.1. Lineage specification in the regressive and the dissipative control regime

case, that the mean propensity level x̄ = 1/N and the root xR of the reward func-
tion equal (xR = x̄), fluctuations around the mean propensity level are gradually
suppressed until the system reaches a steady state xi = x̄, ∀ i. This idealized sce-
nario is subsequently used to outline the system behavior in the regressive control
regime. However, the divergence of the root xR of the reward function from the
mean coexpression level x̄ = 1/N leads to fluctuations of the ground state and
can possibly introduce a lineage bias. The latter case is discussed in Section 5.3.

Dependence on the reward function. The shape of the reward function crit-
ically regulates the dynamics of convergence of the lineage propensities x towards
the mean level x̄. In particular, the class of the reward function fm (sigmoid vs.
linear), the slope b at the root point as well as the saturation level σ (in the case
of a sigmoid reward function) sensitively influence the characteristic convergence
curves. The dependence on each of these parameters is discussed below:

• Classes of reward functions. As outlined in Section 4.3.2 two different
types of reward functions fm have been studied, namely a linear (equation
(4.3)) and a sigmoid one (equation (4.4)). Figures 5.2(A) and (C) show the
characteristic convergence curves for different reward functions fm shown in
the corresponding Figures 5.2(B) and (D), respectively. For clear represen-
tation, only the convergence curves for the dominating lineage starting at
x∗
i (t = 0) = 0.8 are shown.

The sigmoid reward functions defined in equation (4.4) can be adapted such
that the maximal slope bi occurring at the root point xR equals the slope of
a corresponding linear reward function with the same root point. As shown
in Figures 5.2(B) and (D) the sigmoid functions (indicated in red and green)
diverge from their linear counterpart (indicated in blue) depending on their
saturation parameter σ.

Illustrated by the characteristic convergence curves in Figures 5.2(A) and
(C), the linear reward functions generally lead to a faster convergence to-
wards the mean propensity level x̄ as compared to the sigmoid reward func-
tions. This is caused by the fact that for propensities xi ( x̄ the negative
reward mi for the linear reward function is much larger as compared to the
reward for the sigmoid function. However, for lineage propensities xi ≈ x̄
the dynamics become more similar.

It should be noted that for large values of the saturation parameter σ the
sigmoid functions and the linear functions are identical in the interval of
interest [0, 1]. As the sigmoid reward functions appear more robust (compare
Section 4.3.2) the further discussion is based on this type of function unless
otherwise noted.
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Figure 5.2.: Convergence curves for linear and sigmoid reward functions.
(A) and (C) show the characteristic convergence curves (averaged over 10000
realizations initiated with x(t = 0) = {0.8, 0.11, 0.09}) for the dominating lineage
propensity x∗i (t). The corresponding reward functions (identified by equal colors)
are shown in (B) and (D), respectively. Parameters of the sigmoid reward func-
tion shown in (B) (and thus related to the convergence curves in (A)) are set to
σi = 0.05 (green), σi = 0.166 (red), bi = −0.5, and xRi = 1/3 for all i = 1, 2, 3.
Parameters of the linear reward function (blue) are bi = −0.5, and xRi = 1/3 for
all i. Parameters in (D) (related to (C)) are set to σi = 0.1 (green), σi = 0.33
(red), bi = −1, and xRi = 1/3 for all i for the sigmoid reward function and bi = −1,
and xRi = 1/3 for all i for the linear reward function (blue).

• Slope of the reward function. The slope bi of the sigmoid reward func-
tions is a crucial parameter regulating how fast the system converges towards
the mean propensity level x̄ = 1/N . As illustrated in Figures 5.3(A) and
(B) the convergence curves are directly correlated with the steepness of the
reward function as larger values of bi lead to a faster convergence. However,
as the reward functions are more similar for values xi ( x̄ the difference in
the convergence curves only become obvious once the lineage propensities x
approach their mean value x̄. In this regime (xi ≈ x̄ = xR) the differences
between the reward functions are most pronounced.
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Figure 5.3.: Convergence curves depending on the slope and the satura-
tion level of the sigmoid reward function.
(A) and (C) show characteristic convergence curves (averaged over 10000 real-
izations initiated with x(t = 0) = {0.8, 0.11, 0.09}) for sigmoid reward functions
with different shape. The corresponding reward functions are shown in (B) and
(D), respectively. Parameters of the sigmoid reward function with different steep-
ness in (B) (thus related to the color coded convergence curves in (A)) are set
to σi = 0.1, xRi = 1/3 , and bi = −0.5 (blue), bi = −1 (green), bi = −10 (red)
for all lineages i. For the scenario with different saturation levels σ in (D) (and
related to the convergence curves in (C)), parameters are set to σi = 0.025 (blue),
σi = 0.05 (green), and σi = 0.1 (red), and xRi = 1/3 , bi = −1 for all lineages i.

• Saturation level of the reward function. The saturation level σ of the
sigmoid reward function turns out to be a similarly sensitive parameter as
the slope bi outlined above. Keeping the slope bi constant and varying the
saturation level σi, the graphs in Figures 5.3(C) and (D) illustrate that the
convergence to the mean expression level x̄ is accelerated for higher values
of σi.

Within the scope of this thesis, both the slope bi and the saturation level σi
appear as sensitive parameters regulating the dynamical behavior of the lineage
propensities x in the regressive control regime.
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Figure 5.4.: Convergence curves depending on the number of lineages N .
(A) shows the characteristic convergence curves for systems with differ-
ent numbers of competing lineages: N = 3 (red) initialized with x(t =
0) = {0.8, 0.11, 0.09}; N = 5 (green), initialized with x(t = 0) =
{0.8, 0.05, 0.05, 0.05, 0.05}; N = 7 (blue), initialized with x(t = 0) =
{0.8, 0.033, 0.033, 0.033, 0.033, 0.033, 0.033}. For each scenario 10000 individual re-
alizations have been performed to calculate the shown average convergence curves.
As the mean expression level x̄ scales with 1/N , the root xR is adapted for the
sigmoid reward functions shown in (B) with xR = 1/3 (red), xR = 1/5 (green),
xR = 1/7 (blue), and σi = 0.1, bi = −1 for all lineages i.

Dependence on the number of lineages. For varying numbers of competing
lineage propensities N the sigmoid reward functions need to be modified. As the
mean propensity level x̄ = 1/N scales with the number of lineages N , the root
point xR = x̄ of the reward functions is shifted along the x-axis. This dependency
is illustrated in Figure 5.4(B) showing the sigmoid reward functions for the sce-
narios N = 3, 5, 7. However, as indicated by the characteristic convergence curves
in Figure 5.4(A) this shift only has a minor effect on the dynamics of the con-
vergence towards the mean propensity level x̄. In this sense the system appears
robust against variations in the number of competing lineages.

5.1.2. Dynamics in the dissipative control regime

General behavior. In the dissipative regime, the system initially undergoes a
competitive phase characterized by moderate fluctuations of the lineage propen-
sity levels. These fluctuations occur, since all propensities are generally in the
same range (xi ≈ x̄ = 1/N) and are therefore equally likely to be chosen for the
update procedure. However, in the course of time one lineage propensity takes
over, reducing the probability for the update procedure to act on the competing
lineages (see also Section 4.3.2 and Appendix A.1). The increase of the domi-
nating lineage propensity leads to reduced fluctuations and an acceleration of the
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Figure 5.5.: Trajectories in the dissipative control regime.
(A - E) show a series of five possible realizations of the lineage specification
process under the dissipative control regime (lineage propensity x vs. time for
N = 3, ni = 0.05, initialized with x(t = 0) = {0.33, 0.33, 0.33}). (F) illustrates
the characteristic divergence curve for the dominant lineage averaged over 10000
independent simulation runs. Starting from xi(t = 0) = 0.33, threshold values
(indicated by the squares) are set to xt = {0.45, 0.55, 0.7, 0.9, 0.98}. Error bars
indicate the interquartile range. Curves are slightly shifted within the figures to
avoid superpositions.
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lineage specification process. Finally, the normalization procedure slows down
the lineage specification process and the leading lineage propensity x∗

i (t) → 1 in
the limit t → ∞. Figures 5.5(A-E) show examples of five possible realizations
with slightly different behavior during the initial competition phase. These differ-
ences are caused by the intrinsic stochasticity of the underlying update procedure.
Further details of the simulation procedure are provided in Appendix D.2.
The set of realizations in Figure 5.5(A-E) suggests that the average divergence

from the mean lineage propensity level x̄ = 1/N is a suitable measure to character-
ize the dynamics in the dissipative control regime (divergence curve). Technically,
for each individual trajectory the time point is recorded when the lineage propen-
sity of the dominating lineage x∗

i passes a certain threshold xt. Time averages for
different individual threshold values are obtained separately for each dominating
lineage i. The resulting divergence curves in Figure 5.5(F) connect the time av-
erages for the individual threshold values xt = {0.45, 0.55, 0.7, 0.9, 0.98}, thus
providing a comprehensive picture of the temporal extension of lineage commit-
ment for each individual lineage i.
Furthermore, the fraction of cells that finally commit to each of the N possible

lineages is an indicator of the intrinsic balance of the lineage specification process.
The importance of this measure is illustrated below.

Dependence on the reward. The critical parameter of the stochastic lineage
specification process in the dissipative control regime is the intercept of the lin-
ear reward function fm, defined as ni in equation (4.5), which is constant and
independent of xi. As Figure 5.6(A) indicates, the process of lineage specification
slows down as the reward mi = ni declines with the intercept. However, as long
as the intercepts are chosen to be identical for all lineages N also the contribution
to each of the lineages is balanced. This is shown in Figure 5.6(B) outlining the
fraction of cells that finally commit to each of the N = 3 possible lineages for
different values of ni.
Increasing one of the individual intercepts ni results in a higher likelihood for

the promotion of the particular lineage. Recalling that the intercept ni directly
determines the reward mi it follows that the particular lineage with the highest
reward benefits most in the update procedure. This “unbalanced” contribution is
illustrated in Figure 5.7 in which the intercepts ni are fixed for two of the three
lineages (i = 2, 3, green and blue) whereas the other one is stepwise increased
(i = 1, red). Figures 5.7(A), (C), and (E) illustrate the characteristic divergence
curves. Given the increased reward of the “red” lineage the commitment process
is accelerated as compared to the “blue” and “green” lineages.
Furthermore, the lineage contribution is skewed towards the preferred lineage.

This behavior is illustrated by the bar charts in the corresponding Figures 5.7(B),
(D), and (F), respectively, in which the fraction of cells in each of the N = 3
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Figure 5.6.: Lineage commitment for balanced rewards.
(A) illustrates divergence curves (averaged over 10000 individual realizations with
x(t = 0) = {0.33, 0.33, 0.33}) for different rewards mi = ni = 0.025, 0.05, 0.1, 0.2.
For each of the four scenarios, ni is identical for all N = 3 lineages (“bal-
anced”). Bar charts in (B) show the fraction of cells finally committing to
each of the lineages (indicated by corresponding colors) for the different scenarios
ni = 0.025, 0.05, 0.1, 0.2. Error bars are negligible due to many realizations.

possible lineages is shown. It is evident that the skewing effect becomes more
dominant for increased intercept levels ni of the preferred lineage.
In Figure 5.8 a similar scenario is shown in which only the intercept ni of the

“blue” lineage (i = 3) is kept fixed. The intercepts of the “red” and the “green”
lineages (i = 1, 2, respectively) are both increased (in Figures 5.8(A-D): n1 >
n2 > n3, in Figures 5.8(E), (F): n1 = n2 > n3). As indicated in the corresponding
bar charts these scenarios lead to different skewed lineage contributions with an
increasing disadvantage of the “blue” lineage (i = 3).

Dependence on number of lineages. Unlike the regressive control regime in
which the number of competing lineages has little impact on dynamics of conver-
gence towards the mean coexpression level x̄, this effect is more pronounced in the
dissipative regime. Upon initiation of the competition process in the dissipative
regime there are in general N different lineages with similar probabilities to be
chosen in the update process. As the individual update probability of a particu-
lar lineage decreases with the number of competitors it is evident that the time
point until one of the lineages dominates over the others is delayed. This effect
is illustrated in Figure 5.9(A) in which the divergence curves are compared for
the scenarios N = 3, 5, 7. Figures 5.9(B), (C), (D) provide sample trajectories for
the cases N = 3 (B), N = 5 (C), and N = 7 (D). These individual realizations
support the notion that an increase in the number of lineages leads to a prolonged
competition phase in which most of the lineages have a similar propensity levels.
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Figure 5.7.: Lineage commitment for unbalanced rewards (1).
(A), (C), (E) illustrate changes in the divergence curves for different unbalanced
rewards. Intercepts of the lineages i = 2 (green) and i = 3 (blue) are kept
fixed (n2 = n3 = 0.05) and the intercept of lineage i = 1 (red) is subsequently
increased (n1 = 0.055 in (A), n1 = 0.06 in (C), n1 = 0.07 in (E)). Averages for
each scenario are based on 10000 individual realizations initialized with x(t =
0) = {0.33, 0.33, 0.33}. The bar charts in (B), (D), (F) show the corresponding
fractions of cells finally committing to each of the 3 lineages (lineage contribution,
indicated by the color coding).
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Figure 5.8.: Lineage commitment for unbalanced rewards (2).
(A), (C), (E) illustrate changes of the divergence curves for different unbalanced
rewards. The intercepts of lineage i = 3 (blue) is kept fixed at n3 = 0.05 for all
scenarios. However, the intercepts of lineages i = 1 (red) and i = 2 (green) are
subsequently increased (n1 = 0.06, n2 = 0.055 in (A), n1 = 0.07, n2 = 0.055 in
(C), n1 = 0.07, n2 = 0.07 in (E)). Each scenario represents an average over 10000
individual realizations initialized with x(t = 0) = {0.33, 0.33, 0.33}. The bar
charts in (B), (D), (F) show the corresponding fraction of cells finally committing
to each of the 3 lineages (lineage contribution).
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Figure 5.9.: Lineage commitment depending on the number of lineages.
(A) shows the divergence curves for systems with N = 3, 5, 7 competing lineages.
Averages are taken over 10000 individual realizations, each initiated with identical
propensities at time t = 0, i.e. xi = 1/N for all i. The intercept of the linear
reward functions has been set to ni = 0.05, ∀i. (B - D) illustrate typical,
individual realizations for the three scenarios N = 3, 5, 7, respectively.

Reversibility. Within the dissipative control regime it is a central question until
which point of development the process of lineage commitment is still reversible.
This issue is best addressed by analyzing the propensities of the lineages that
are not dominating at the end of the commitment process (referred to as inferior
lineages of a particular realization). The maximum value of the lineage propensity
(max xj) for any inferior lineage j is an indicator for how far the dissipative process
can continue while it is still possible to revert to another dominating lineage i
which is finally up-regulated (x∗

i → 1).
Figure 5.10 provides an estimate of this measure for different values of the

reward mi = ni. For higher values of mi there are a few cases for which the
lineage propensity for an inferior lineage was already up to xj ≈ 0.7 but the process
still reverted to another dominating lineage. As for smaller values of the reward
mi = ni more and more simulation steps are necessary to actually realize such a
reversion these maximal propensity for the inferior lineages decrease progressively.
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Figure 5.10.: Reversibility of the commitment process.
The figure shows the relative frequency of observing a maximal lineage propensity
of the inferior lineages before the process of lineage commitment finally reverts
to an alternative dominating lineage. Inferior lineages are all the lineages j ∈
N that do not dominate a particular realization of a commitment process for
t → ∞. Different colors correspond to different values of the reward mi = ni =
0.025, 0.05, 0.1, 0.2. The points indicate relative frequencies of a corresponding
histogram, connected by solid lines for better visualization. Histograms are taken
from 500,000 realizations each, initialized with x(t = 0) = {0.33, 0.33, 0.33}.

5.2. Dynamics of the extended stem cell model

5.2.1. Modeling the in vivo situation

As proposed in Section 4.4 the individual dynamics of lineage specification in
the regressive and the dissipative control regime are embedded in the model of
hematopoietic stem cell organization originally proposed by Roeder and Loeffler
[33]. The overall dynamics of cell switches between signaling contexts A and Ω is
not influenced by the dynamics of lineage specification. However, the individual,
cell-intrinsic lineage propensity vectors x are modulated according to the rules
of the regressive control regime for cells in A and according to the rules of the
dissipative regime for cells in Ω . Although little information is available about
the variability of transcriptional activity during the cell cycle, the model assumes
without loss of generality that the process of lineage specification in signal context
Ω only takes place in G1 but not during S, G2 and M phase.

Following the process of lineage specification within a single cell and its progeny
over extended time periods, sample trajectories now appear as a superposition of
the two different control regimes. The background color for the four sample tra-
jectories shown in Figure 5.11 encodes the signaling context (and thus the control
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Figure 5.11.: Trajectories of the extended stem cell model.
(A - D) Possible realization of the lineage specification process within four sample
cells chosen from one system (lineage propensity x as a function of time for N = 3
lineages, indicated by the colors). Upon cell division (thin black lines), lineage
propensities are only followed in one of the two daughter cells. Background colors
indicate the current signaling context of the cells (white background - A , grey
background - Ω ). Parameters are set to ni = 0.1 for the reward function in the
dissipative regime, and σi = 0.1, bi = −1, and xRi = 1/3 for i = 1, 2, 3 for the
sigmoid reward function in the regressive control regime.

regime) to which the cell currently belongs. Whereas the white background indi-
cates signaling context A (with the regressive control regime), signaling context
Ω (with the dissipative control regime) is encoded by the grey background. The
short intermediate plateaus in Ω correspond to the S, G2 and M phase of the cell
cycle in which the process of lineage specification is halted. Technically, the time
courses in Figure 5.11 show the continuation of the lineage specification process
over several subsequent cell generations, thus only following the lineage propen-
sities x in one of the two daughter cells after each cell division (black horizontal
lines).
Initializing the complete model with a sufficient number of stem cells the system

reaches a dynamically stabilized equilibrium with respect to the stem cell numbers
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5.2. Dynamics of the extended stem cell model

in A and Ω as well as the numbers of differentiating cells1(see Figure 5.12(A)).
Appropriate parameter configurations are provided in Appendix D.3. On top of
this cellular dynamic the cell-intrinsic process of lineage specification leads to the
establishment of stable fractions of cells committed to each of the N possible
lineages. As for the example shown in Figure 5.12(B), N = 3 different lineages
compete with identical parameters of the lineage specification process (dissipative
regime ni = 0.1, regressive regime with sigmoid reward function with saturation
level σi = 0.1, slope bi = −1). As the time courses indicate the three levels are
fluctuating around the same mean level. The fluctuations are due to the limited
life time of the cells, after which large clones of cells are deleted at identical times.
Figure 5.12(C) shows the average fraction of cells committed to each of the three
lineages as well as the fraction of uncommitted cells measured from time step 1000
to 4000.
As illustrated in the previous section, the intercept ni of the linear reward

function fm = mi = ni in the dissipative control regime is the critical parameter
for the regulation of lineage specification. Different representative configurations
of reward parameter mi = ni are discussed below:

• The sequence of graphs in Figure 5.12 compares two model systems with
different rewards mi = ni in the dissipative control regime, namely the
rewards for all lineages i are increased from mi = ni = 0.1 (Figures 5.12(A-
C)) to mi = ni = 0.2 (Figures 5.12(D-E)). As expected, the overall cellular
dynamic (Figures 5.12(A) and (D)) is left untouched as the parameters of the
underlying HSC model (compare Section 3.4) remain constant. Similarly, the
proportion of cells committing to each of the three lineages remains balanced
as the probabilities for commitment are still equal (Figures 5.12(C) and (F)).
In contrast, the overall increase of the rewards (mi = ni = 0.1 → mi = ni =
0.2) accelerates the process of lineage specification. This reduces the fraction
of uncommitted cells in which the dominant lineage propensity is below the
threshold of commitment x∗

i < xcom (shown in grey in the Figures 5.12 (B),
(C) and (E), (F)).

• In the unbalanced situation, the individual rewards mi = ni for the different
lineages i differ. Figures 5.13(A-C) show a simulation sequence, in which
two of the rewards are left untouched (m1/2 = n1/2 = 0.1) and one is slightly
reduced (m3 = n3 = 0.09). Again, the overall cellular dynamic is left un-
touched (Figure 5.13(A)). In contrast, the probability of promoting the third
lineage (i = 3, blue) is reduced. This effect is visible in the time courses
(Figure 5.13(B)) as well as in the averaged fractions (Figure 5.13(C)).

1Referring to Figure 4.7 the stem cell numbers in A comprise all cells within signaling context
A , stem cell numbers in Ω refers to all cells in signaling context Ωwith a > amin and numbers
of differentiating cells includes all cells in signaling context Ωwith a < amin.
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Figure 5.12.: Dynamics in system with balanced rewards.
(A), (D) show the number of stem cells in A (black), stem cells (magenta) and
differentiating cells (orange) in Ω as functions of time starting from a sparsely
populated initial system. (B), (E) show the corresponding time courses for the
same system with respect to lineage commitment (grey - uncommitted cells; red,
blue, green - cell numbers of the committed cells with x∗i > xcom = 0.75). Bar-
charts in (C), (F) indicate the fraction of cells in each of the four populations,
averaged over the simulation run between time steps 1000 and 4000. Parameters
of lineage specification are chosen as ni = 0.1 (A - C) and ni = 0.2 (D - F) for the
reward function in the dissipative regime, and σi = 0.1, bi = −1, and xRi = 1/3
for i = 1, 2, 3 for the sigmoid reward function in the regressive control regime.

• This effect is intensified if all lineages are parameterized with individual in-
tercepts ni. This is the case in the sequence of graphs in Figures 5.13(D-F)
in which the intercepts are chosen as n1 = 0.12, n2 = 0.1, n3 = 0.08. Clearly,
lineage i = 1 (red) dominates the commitment process.

• Compared to the sequence of graphs in Figures 5.13(D-F), the simulations
for Figures 5.13(E-J) are based on the doubling of the individual intercepts
ni for the three lineages (n1 = 0.24, n2 = 0.2, n3 = 0.16) keeping their
ratio constant. Although the commitment process is generally accelerated
the overall appearance (one lineage high, one intermediate, one low) is main-
tained.
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Figure 5.13.: Dynamics in a system with unbalanced rewards.
Time courses of the cellular composition and the number of committed cells in
each lineage as well as the averaged proportions of cells are arranged similar to
Figure 5.12. Parameters of lineage specification in the dissipative regime are
chosen as n1 = n2 = 0.1 and n3 = 0.09 (A-C); n1 = 0.12, n2 = 0.1 and n3 = 0.08
(D-F); and n1 = 0.24, n2 = 0.2 and n3 = 0.16 (G-J).The sigmoid reward function
in the regressive regime is given by σi = 0.1, bi = −1, and xRi = 1/3 for i = 1, 2, 3.
Cells are counted as committed if x∗i > xcom = 0.75.

Taking these results together, it can be demonstrated that the absolute rewards
mi = ni of the linear reward function in the dissipative control regime determine
the overall “speed” of lineage commitment 2. However, it is the ratio between the

2The “speed” of lineage commitment is independent form the “speed” of differentiation. The
later is defined by the differentiation rate d that has been introduced in Section 3.4
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5. Results I: Dynamics of lineage specification

individual lineage specific values that determine whether the commitment process
is balanced or not.
Interestingly, the model system is less sensitive to the defining parameters of the

regressive control regime. Even in the situation that the parameters of the reward
functions in the regressive control regime differ considerably, there is almost no
visible effect on the cellular level (data not shown). Recalling that the regressive
regimes established the coexpression scenario in which all lineages propensities x
are equalized, the corresponding parameters only alter the “speed” of this process.
Differences in the lineage specific, individual parameters do not accumulate as
long as the convergence to the mean expression levels x̄ is generally shorter as the
average residence time in A .
The individual trajectories in Figure 5.11 indicate that cells changing back from

signaling context Ω into A are involved in a process of fate reversion. As a certain
time in Ωpromotes lineage specification under the dissipative control regime, the
cell’s lineage propensity levels start to diverge from the common coexpression level.
However, as the model explicitly relies on a dynamically stabilized equilibrium
of cells in A and Ω , the process of fate reversion under the regressive control
regime appears as a natural consequence. Assuming that the process of lineage
specification is slow enough compared to the speed of differentiation (loss of affinity
a described by the model parameter d) this reversion only occurs for early steps
of the lineage commitment. However, in more extreme scenarios, as in the case
of transplantation experiments in irradiated recipients, this effect might be more
pronounced.
Briefly summarizing, the model has been constructed such that the finally dom-

inating lineage of a particular realization can only be predicted in a probabilistic
sense. In the case of identical rewards ni in the dissipative regime, the dominance
is equally likely for each lineage i . However, the specification of rewards ni with
different values for each lineage skews the decision process towards lineages with
the higher rewards. Moreover, a self-renewing cell can contribute to different cells
types in varying fractions.

5.2.2. Adapting the model to the in vitro situation

As shown in a previous study [223], the experimental in vitro situation is suffi-
ciently captured by reducing the regeneration rate r and manipulating the amin

limit. These assumptions generally lead to an exhaustion of the population of
self-renewing cells and the initiation of lineage commitment processes within all
cells. However, the dynamics of the lineage specification process remain largely un-
touched and the phenomena of reduced self-renewal capacity is merely attributed
to the original cell-kinetic model.
Since no stabilized dynamic equilibrium is established the composition of the cell

culture is generally accessed in a time-dependent manner or by end point analysis.
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Figure 5.14.: Dynamics of an in vitro system with balanced and unbal-
anced rewards.
Time courses of the cellular composition are shown for a simulated in vitro sce-
nario (regeneration rate r = 1, norm number of signaling context ANA = 5,
initiated with 500 cells within a ∈ [0.01, 1]). (A) Absolute cell numbers as a
function of time for a scenario with balanced contribution to all lineages (black -
total cells, grey - uncommitted cells, colored - lineages 1 to 3). (B) Fraction of
cells being uncommitted (grey) versus committed to lineages 1, 2 or 3 (red, green,
blue) as a function of time for the same balanced rewards (m1...3 = n1...3 = 0.1).
(C), (D) Corresponding graphs to (A) and (B) for the situation of unbalanced
rewards (m1 = n1 = 0.1, m2 = n2 = 0.08, m3 = n3 = 0.07). The sigmoid reward
function in the regressive regime is set to σi = 0.1, bi = −1, and xRi = 1/3 for
i = 1, 2, 3 in all scenarios. Cells are counted as committed if x∗i > xcom = 0.75.

Figure 5.14 provides typical time courses simulating an exponentially expanding
cell culture under in vitro conditions. As shown in Figure 5.14(A), the first cells
appear as committed around time step t = 50. Following their expansions, the
number of uncommitted cells (grey) diverges from the exponentially increasing
total number of cells. Subsequently, the committed cells determine the overall
system dynamics before the system finally declines due to the limited lifetime
of the differentiating cells. Figure 5.14(B) provides almost identical information.
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5. Results I: Dynamics of lineage specification

Here, the fraction of cells within each lineage is shown instead of the total cell
numbers. This is conceptually closer to cell culture experiments in which the
phenotypic composition is accessed over time. Figures 5.14(C) and (D) illustrate
the same behavior for the situation of unbalanced lineage contribution in which the
development of the “red” lineage is more likely as compared to the other lineages.
As for the modeling of the in vivo situation, the skewed lineage contribution results
by adjusting the intercepts in the dissipative regime (for the shown situation:
n1 > n2 > n3).

5.2.3. Instructive versus selective lineage specification

As pointed out in Section 4.3.4 of the previous chapter, there are in principle two
scenarios to influence lineage contribution, namely the instructive and the selec-
tive scenario of lineage specification. The previous analysis in this section focused
particularly on the question how lineage contribution can be intrinsically skewed
by unbalanced rewards. This approach directly corresponds to the instructive lin-
eage specification since subsequent cell death does not have a regulating function
on the lineage contributions.
In contrast, selective lineage specification is based on the concept that the initial

lineage decision is balanced (by using identical rewards mi for all lineages) whereas
the regulation of the lineage contribution is facilitated by a subsequent, selective
cell death process. Details of the selection process are described in Section 4.3.4.
In order to illustrate the dynamics of selective lineage specification, a system is

studied in which the contributions to each of N = 3 possible lineages is balanced
on the level of the intrinsic lineage decision by using identical rewards mi for all
lineages i. As a reference system, the selective cell death process ΦS is adjusted
such that the lineage specific intensities for cell death (defined in equation (4.9))
are set to φi = 0.01 for all lineages i (also, the boundaries for the action of the cell

death process xdeath/low
i = 0.5 and xdeath/high

i = 1.0 are set to identical values for all
i). In this case, there is no selective effect as all lineages are equally affected by the
cell death process ΦS and the fraction of cells contributing to each of the possible
lineages is conserved (Figure 5.15(A), (B)). Additional to the cell numbers in each
lineage in Figure 5.15(A) also the cumulative number of death cells is shown (in
yellow). As the cell death intensity ΦS = φi remains constant once a certain

threshold for the dominating propensity is passed (x∗
i > xdeath/low

i ) the cumulative
number of death cells follows the development of the target cell population.
In contrast, if the probability for cell death φi is increased for one lineage as

compared to the others, the relative fraction of cells committed to this lineage
decreases. This intuitive result is illustrated in Figures 5.15(C), (D). Going one
step further and assigning different cell death intensities φi to each individual
lineage, a qualitatively similar result is obtained as in the instructive scenario
(compare Figure 5.14(C), (D)): one lineage is positively selected whereas the other
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Figure 5.15.: Dynamics of an in vitro system with selective lineage specif-
cation.
(A), (C), (F) Time courses of the cellular composition including the cumula-
tive number of death cells and (B), (D), (E) the fraction of cells are shown as
functions of time for a simulated in vitro scenario with selective lineage speci-
fication (regeneration rate r = 1, norm number of signaling context ANA = 5,
initiated with 500 cells within a ∈ [0.01, 1]). Colors correspond to Figure 5.14.
Additionally, the number of death cells is shown in yellow. The scenarios differ
in the lineage specific cell death intensity: (A), (B): φi = 0.01 for i = 1, 2, 3;
(C), (D): φ1 = φ2 = 0.0 and φ3 = 0.02; (E), (F): φ1 = 0.0, φ2 = 0.01 and

φ3 = 0.02. Boundaries for the cell death action are set to xdeath/lowi = 0.5 and

xdeath/highi = 1.0. Parameters of the intrinsic lineage specification are identical
for all lineages: in the dissipative regime m1...3 = n1...3 = 0.1 and for the sigmoid
reward function in the regressive regime σi = 0.1, bi = −1, and xRi = 1/3. Cells
are counted as committed if x∗i > xcom = 0.75.
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5. Results I: Dynamics of lineage specification

lineages play only minor roles. A particular example for the selective scenario is
shown in Figures 5.15(E),(F).
For reasons of completeness, it is remarked that selective lineage specification

can also be applied for the simulations of the in vivo scenarios yielding stable
populations of committed cells over time. The qualitative result, that some lin-
eages can be promoted at the expense of others, holds in this situation, too. A
comparative study between the selective and the instructive scenarios is provided
in Section 5.4.3.

5.3. Fluctuations of the ground state and lineage bias

As mentioned above, a divergence of the root of the reward functions xR from
the mean propensity level x̄ = 1/N induces the individual lineage propensities to
fluctuate around their mean expression level instead of converging to this level. In
order to understand this behavior one might follow a brief experiment of thought:
Given that the root of the reward functions is higher than the mean propensity
level (xR > x̄ = 1/N) and assuming that N lineages have lineage propensities
xi ≈ 1/N , the update procedure would choose each lineage with almost identical
probability. This lineage would receive a positive reward (as xi ≈ 1/N < xR), thus
increasing its own propensity and decreasing the propensities of the others due to
the normalization routine. However, at a certain point, an individual propensity
xi might exceed the root of the reward functions xR, thus in the next update, for
which this lineage has been chosen, it receives a negative reward. This imposes
an upper limitation and keeps the whole update process in the regressive regime
in a frustrated state: the system can neither diverge nor converge to a fixed level.
A similar explanation holds for the situation, that the root of the reward func-

tions is smaller than the mean propensity level (xR < x̄ = 1/N). In this case,
the propensities preferentially decrease until they are limited by a lower boundary
as soon as individual propensity levels decrease below xR. The phenomenological
behavior is illustrated in Figure 5.16 in which individual realizations are shown for
the cases xR < x̄ = 1/N (Figure 5.16(A), (B)), xR = x̄ = 1/N (Figure 5.16(C),
this is the general case in which the propensities converge towards x̄ = 1/N) and
xR > x̄ = 1/N (Figure 5.16(D), (E)). Figure 5.16(F) shows the corresponding sig-
moid reward functions which are just shifted with respect to their root xR. Colors
correspond to the individual realizations in Figures 5.16(A-E).
As long as the deviations between the root of the reward functions xR and the

mean propensity level x̄ = 1/N are still moderate, all propensities can fluctuate
around their common mean level. However, increasing the root of the reward
functions such that the xR → 1/(N − 1) the system can reach a qualitatively
different dynamical equilibrium. As indicated for three example realizations in
Figure 5.17 with xR = 0.47, 0.5, 0.55 the propensities in the case N = 3 self-
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Figure 5.16.: Fluctuations of the individual lineage propensities for dif-
ferent values of the root xR.
(A - E) Lineage propensities x for a system with N = 3 lineages are shown as
functions of time for different values of the root of the sigmoid reward function
xR = 0.1 (A), 0.2 (B), 0.33 (C), 0.38 (D), 0.43 (E) in the regressive control regime.
The saturation level σ1...3 = 0.1 and the slope b1...3 = −1 of the reward function
are identical for all realizations. The shape of the corresponding reward functions
is shown in Subfigure (F). The coloring corresponds to the individual realizations
in (A - E).
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5. Results I: Dynamics of lineage specification

organize such that two of them are up-regulated while one is already suppressed.
This phenomena is termed lineage bias, as upon switching to the dissipative regime
the two up-regulated lineages are treated preferentially.
At this point a brief remark is in place to clarify definitions. The process

of shifting lineage contributions from the balanced to the unbalanced situation
(by tuning the rewards mi = ni) as discussed in Section 5.1.2 is referred to as
skewing throughout this thesis. In these cases lineage propensities converge to
xi = x̄ = 1/N in the regressive regime which corresponds to the parameter choise
for the root value xR. In contrast, the preference for certain lineages induced by
a frustrated system with xR *= x̄ = 1/N as outlined above is referred to as lineage
bias.
For a system with N = 3 lineages and xR ≤ 1/2 = 1/(N − 1) (Figure 5.17(A);

red sigmoid reward function in Figure 5.17(D)) the higher propensities stabilize
at a level below 1/(N − 1) = 1/2 resulting in a non-zero value for the third,
lower propensity. In contrast for the case that xR = 1/(N − 1) = 1/2 (Figure
5.17(B); green sigmoid reward function in Figure 5.17(D)) the system reaches
a stable state with two propensities at xi = 1/(N − 1) = 1/2 and the third
propensity approaching zero. This behavior is also observed for the case that
xR ≥ 1/(N − 1) = 1/2 (Figure 5.17(C); blue sigmoid reward function in Figure
5.17(D)). However, as xR > 1/(N −1) the two up-regulated propensities fluctuate
around the level xi = 1/(N − 1) = 1/2.
Considering a large population of cells, the introduction of a lineage bias does

not ultimately result in a shift in the lineage contributions. If the reward functions
in the regressive control regime have identical parameters, the lineage propensities,
which are up- or down-regulated during the establishment of the lineage bias, are
equally distributed. Only in the case, that one lineage i is already penalized in
the regressive regime (e.g. by choosing a smaller saturation level σi) it is less
present among the up-regulated lineage propensities during the establishment of
the lineage bias. If the cells are then switched into the dissipative regime, the
particular lineage does already have an initial disadvantage leading to reduced
lineage contribution.
This scenario is exemplified in Figure 5.18. After keeping 10000 cells in the

regressive control for 1000 timesteps (with the root of the reward functions set
to xR = 0, 47, 0.5, 0.55, respectively), a random lineage bias establishes within
each of these cells. Thus two propensities are up-regulated while one is down-
regulated. However, if this process is unbiased (σ1...3 = 0.1), all lineages are
equally likely to be among the up-regulated ones. Changing the system to the
dissipative regime, the lineage contributions of the three individual lineages are
still balanced as shown in Figure 5.18(A) for three different values of the root of
the reward functions xR = 0.47, 0.5, 0.55. However, if one lineage (in this case the
blue one) has a disadvantage during the establishment of the lineage bias in the
regressive control regime (σ1,2 = 0.1, σ3 = 0.08), it is less present among the up-
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Figure 5.17.: Lineage bias for different values of the root xR.
(A - C) Lineage propensities x for a system with N = 3 lineages are shown as
functions of time for different values of the root of the sigmoid reward function
xR = 0.47 (A), 0.5 (B), 0.55 (C) in the regressive control regime. The saturation
level σ1...3 = 0.1 and the slope b1...3 = −1 of the reward function are identical
for all realizations. The shape of the corresponding reward functions is shown in
(D). The coloring corresponds to the individual realizations in (A - C).

regulated lineage propensities. After switching the cells to the dissipative control
regime this effect becomes manifest by the reduced contributions of the “blue”
cells (Figure 5.18(B)).
The analysis shows that the model is in principle able to represent an intrinsic

lineage bias. A detailed comparison of this phenomenon to available data is beyond
the scope of this thesis and will be subject to a separate scientific work.
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Figure 5.18.: Lineage contribution for the fluctuating ground state.
(A). 10000 cells are simulated in the regressive control regime with the root of
the reward functions set to xR = 0, 47, 0.5, 0.55. Further parameters are set to
x1...3(t = 0) = 0.333, saturation level σ1...3 = 0.1 and slope b1...3 = −1. For the
simulations in (B) only the saturation level of the reward function of the third
lineage i = 3 is reduced to σ3 = 0.08. After 1000 time steps all cells are switched
into the dissipative control regime with parameters n1...3 = 0.05. The contribution
to the individual lineages is shown by the bar charts depending on the position of
the root point in the regressive regime xR.

5.4. Experimental validation

In the following the established simulation model of lineage specification is ap-
plied to a number of landmark experiments that characterize the developmental
potential of hematopoietic stem and progenitor cells in vitro.

5.4.1. Lineage contribution of single differentiating cells

Early experiments on the lineage contribution of isolated hematopoietic, spleen-
derived mouse cells revealed the existence of cells that give rise to more than one
cell type [26, 27]. In a particular protocol, Ogawa and coworkers used a primary
culture initiation assay to purify colony forming cells [26]. Within the population
of colony forming cells, they found that about two thirds of the cells give rise
to clonal colonies containing only one cell type, whereas the remaining third of
the cells contributed to two or even more (up to six) different cell types. In a
recent study, Takano et al. [222] used CD34- c-Kit+ Sca-1+ lin- (CD34- KSL)
cells taken from adult mouse bone marrow for a similar set of experiments. The
lineage composition of the progeny of these cells was analyzed in vitro using single
cell differentiation assays.
For the comparison of the particular data with the proposed model, a sim-

ple simulation protocol is adapted. A previously established reference parameter
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Figure 5.19.: Simulation strategies for single cell differentiation experi-
ments.
Cells from a defined region within the homeostatic source assay (transfer pool)
are transferred into a lineage assay. The transfer pools are indicated by the boxes
in the source assay (pool S (red) - fit for the data from Suda et al. [26, 27]; pool
T (blue) - fit for the data from Takano et al. [222]). Within the lineage assay the
cells undergo lineage commitment and the contribution of different lineage types
is evaluated.

set describing hematopoietic stem cell organization in unperturbed mice [221] is
used for the representation of the homeostatic situation from which bone mar-
row cells had been isolated experimentally (source assay, compare Figure 5.19).
This parameter set was complemented by an appropriate representation of the
intracellular lineage specification dynamics with equal rewards mi for all lineages,
intentionally neglecting any correlations between the development of certain lin-
eages. Parameters are chosen such that a differentiating stem cell is considered
committed (x∗

i > xcom) after four to ten days of lineage specification in signaling
context Ω . Cells used for transfer into the lineage assays are chosen randomly
among a well defined subpopulation of the source assay (called transfer pool),
characterized by the range of the affinity parameter atrans. The boundaries of
these transfer pools are the central parameters to fit the simulation results to the
experimental data by Suda et al. [26, 27] (pool S, shown in red in Figure 5.19) and
Takano et al. [222] (pool T, shown in blue in Figure 5.19). The lineage assay is
represented by an empty model system in which the development of the progeny is
observed for 240 h. Finally, the number and the lineage of cells produced in each
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Figure 5.20.: Lineage contribution of single differentiating cells
(A). Experimental results for the differentiation of single CD34- KSL cells [222]
are indicated by the grey bars (mean, CI not available). Results for the cor-
responding simulated cells are shown in blue (mean of 50,000 simulation runs).
The lineage contribution is coded as follows: 1-neutrophil, 2-megakaryocyte, 3-
erythroblast, 4-macrophage (B). Introduction of a moderate correlation between
lineages 1 and 4 in the in silico model increases the particular lineage contribu-
tions. Parameters are provided in the text and in Appendix D.4.

lineage assay are evaluated. Due to an expected deficiency of a properly func-
tioning hematopoietic niche environment in cell cultures it is assumed that for all
simulated in vitro assays the signaling context A simply maintains the self-renewal
ability of a cell (measured by its affinity a) but does not promote its regeneration
(r = 1, see also Section 5.2.2).

In their series of experiments, Ogawa and coworkers [26, 27] distinguished
six different lineages, namely neutrophils, macrophages, eosinophils, mast cells,
megakaryocytes, and erythrocytes. Therefore, the in silico intracellular lineage
specification dynamics are constructed with N = 6 different lineages. The trans-
fer pool S (cf. Figure 5.19) for the simulation of the single cell differentiation data
[26] has been adjusted to aStrans ∈ [0.000001, 0.99]. Using this parameterization
the experimental observations are closely matched: two third of the cells only
contribute to a single lineage (model prediction: 65.5 %) whereas the remaining
third contributes to two or more lineages. The potential development in six dif-
ferent lineages yields 57 possible combinations in which the colonies contribute to
two or more different cell types (multiple lineage contribution). However, as the
authors report only about 50 such colonies in total, a statistical evaluation and a
comparison with the simulation data is not instructive.

To adapt the model system to the experimental setup presented by Takano
et al. [222], the number of possible lineages is reduced to N=4 (neutrophils,
megakaryocytes, erythroblasts, macrophages). Due to the more sophisticated stem
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5.4. Experimental validation

cell sorting procedure used in this experiment, the source population of initial
parent cells is expected to contain an increased fraction of uncommitted cells. This
is reflected by the narrower transfer pool T (aTtrans ∈ [0.012, 0.99], cf. Figure 5.19)
marking the difference to the simulations of the previous experiments by Suda et al.
[26]. In the single cell differentiation studies of bone marrow derived CD34- KSL
cells [222], the majority (43%) of plated cells contributed to all four determined
lineages while other combinations are observed with lower frequency. Applying
the adapted transfer pool T it appears that in the majority of cases (model result:
42.9%) the progeny contained all four lineages whereas other combinations are
reduced (Figure 5.20(A)). It should be emphasized that this qualitative pattern is
achieved even under the simplifying assumption of balanced rewardsmi = ni = m.
However, the precise matching of the results is incomplete. The experimental data
suggests that there is a moderate correlation between neutrophil and macrophage
differentiation (see lineage combination 1:4 in Figure 5.20(A)).
In order to study whether the artifical introduction of a moderate, positive cor-

relation between two lineages results in this kind of behavior a minor modification
of the presented model has been developed. The details are provided Section 4.3.2.
For the particular case of a correlation between lineages 1 and 4 (neutrophils and
macrophages, respectively) a positive correlation parameter γ14 = γ41 = 0.3 has
been applied. For all other pairs of cell types i, j, these correlations are neglected,
thus γi,j = 0.
As indicated in Figure 5.20(B), the in silico model leads to a shift in the dif-

ferentiation pattern similar to the experimental observations. Progeny of single
cells containing neutrophil and macrophage cells are now significantly enhanced
compared to other developments. However, due to the complexity of these, po-
tentially weak correlations between certain lineages and the limited amount of
available date, a detailed quantification and further study of this process has not
been performed.
Specific parameter settings for the simulations in this Section are provided in

Appendix D.4.

5.4.2. Comparative differentiation of paired daughter cells

Extending the experiments on the differentiation of individual cells in vitro, Ogawa
and coworkers examined the developmental fate of two daughter cells derived from
one parent cell [27]. By comparing the lineage contribution within the colonies
generated from each of the daughters, the authors concluded that lineage potential
is progressively restricted by a sequence of stochastic commitment steps taking
place at each cell division. However, as already discussed in Section 3.3.5, the
coupling of the lineage restriction to the cell divisions has not been demonstrated
convincingly. The proposed model of lineage specification, which is intrinsically
decoupled form the process of cell division, further challenges this view.
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Figure 5.21.: Simulation strategies for paired daughter cell differentiation
experiments.
Cells from a defined region within the homeostatic source assay (transfer pool)
are transferred into a division assay. The transfer pools are indicated by the boxes
in the source assay and are identical to the single cell differentiation experiments
outlined in Figure 5.19 (pool S (red) - fit for the data from Suda et al. [27]; pool
T (blue) - fit for the data from Takano et al. [222]). After the first division in the
division assay both daughter cells are separated and their lineage contribution is
evaluated within a lineage assay.

To support the analysis of this type of experiment in the context of the proposed
model a further data set is taken into account. Takano and coworkers [222] re-
peated the earlier experiments by using a more sophisticated selection protocol to
identify progenitor hematopoietic progenitor cells (CD34- KSL) taken from adult
mouse bone marrow. The variability of the lineage contribution of a parental cell
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Figure 5.22.: Lineage contribution of paired daughter cells.
(A). Experimental results for hematopoietic spleen-derived mouse cells are shown
in grey (mean, 95% CI) [27]. Results for the simulated cells (defined by the transfer
pool S of the source assay) are shown in red (mean of 50,000 simulation runs,
CI negligible due to the high number of replicates). (B). Experimental results
(corresponding to parental division of CD34- KSL cells in media containing SCF
+ IL-3 13) are shown in grey (mean, 95 % CI) [222]. Results for the simulated
cells (transfer pool T) are shown in blue (mean of 50,000 simulation runs). Only
cells with complete lineage potential (contribution to all four lineages) are shown.
On the x-axis, the lineage contribution of the first daughter is given on top,
of the second daughter below (1-neutrophil, 2-megakaryocyte, 3-erythroblast, 4-
macrophage).

was evaluated by following the fate of its two daughter cells.

The simulation setup is closely related to the above stated case for the lineage
contribution of single cells. In order to account for the separation after the parental
division, randomly chosen cells from the respective pools T and S of the source
assay are transferred in the intermediate division assay. The division assay is
represented by an empty model system mimicking the culture conditions for the
division of the parent cell. For simulation efficacy, all transferred cells are under
the governance of signaling context Ω . The cell cycle position, the affinity a, and
the lineage propensities x are preserved during the transfer from the source assay
to the division assay. After division, both daughter cells are finally transferred
into two separate empty model systems in which the development of the progeny
is observed for 240 h (lineage assay). Finally, the number and the lineage of cells
produced in each lineage assay are evaluated and compared to their sibling.

As in the case of the single cell differentiation assays, Ogawa and coworkers
[27] distinguished six different lineages within their series of experiments. For the
spleen-derived mouse cells, the authors observed that the majority (73%) of the
paired daughter cells contributed to just one lineage, identical for both daughters,
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5. Results I: Dynamics of lineage specification

suggesting that the parental cell had already been committed to one particular
lineage (identical single lineage contribution). In addition, a number of paired
daughter cells were observed which contributed to more than one lineage. In
10% of the experiments, both daughter cells contributed to the same combina-
tion of lineages (identical multiple lineages), whereas in 17 % the daughter cells
contributed to different combinations of lineages (non-identical multiple lineages).
Under the outlined assumptions, the experimental results can be reproduced using
exactly the same transfer pool S as it has been used for the single cell differen-
tiation experiments. The comparison of the data is shown in Figure 5.22(A). In
close correspondence to additional findings reported in [27], it is observed that for
one pair of cells one daughter cell might develop into up to five lineages while the
other daughter cell is restricted to just one or two. Furthermore, some simulations
generated daughters that contribute to the same overall combination of lineages
with considerably different proportions of the individual cell types among their
progeny.
For the case of the more sophisticated stem cell sorting procedure used by

Takano et al. [222] the narrower transfer pool T is applied. Changing no other
parameters, the model reproduces the general results of the experiments: Among
the initial parental cells with complete lineage contribution (all four lineages occur
in at least on of the daughter colonies) paired daughter cells with identical lineage
development dominate over pairs with asymmetric development (Figure 5.22(B)).
In the simulation results additional minor contributions (0.1-8.0%) to other com-
binations of lineages are observed (data not shown). These are not described
experimentally, which is most likely due to the limited number of observations.
Parameters for the simulations on paired daughter cells are provided in Ap-

pendix D.5.

5.4.3. Lineage specification in differentiating cell cultures

The ability of the simulation model to account for varying fractions of committed
cells is verified in the context of a well characterized cell line, namely the FDCP-
mix cell line. FDCP-mix cells are derived from murine, multipotent hematopoietic
progenitors and retain the capacity to self-renew in the presence of high concen-
trations of IL-3 [39, 97]. When transferred to low concentrations of IL-3 combined
with other hematopoietic growth factors, or injected into experimental animals,
FDCP-mix cells show an apparently normal progression of lineage commitment
and differentiation. FDCP-mix cells maintained in Iscove’s Modified Dulbecco’s
Medium (IMDM) containing 20% horse serum and 100u/ml Interleukin-3 (IL-3)
were washed and transferred at a density of 4 x 104 cells/ml to IMDM contain-
ing 20% fetal calf serum and either myeloid (M) or erythroid (E) growth factors
as previously described [97]. The combination of growth factors support differ-
entiation either into a mixture of granulocytes and macrophages (M) or into a
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Figure 5.23.: Simulation strategies for differentiating cell cultures.
For the simulation 250 cells are initialized within a well defined initial affinity a,
uniformly distributed in the range ainit = [0.01, 0.1] in signal context Ω , indicated
by the boxes marked ainit. Simulation parameters are individually adapted for
the differentiation in granulocyte/macrophage (M) or erythrocyte (E) stimulating
conditions.

predominantly erythroid (E) population. On consecutive days up to day 9, cells
were harvested from replicate cultures and cytospun. Following May-Grunwald
staining, differential counts were performed blind on 100-200 cells per time point.
This way, a temporal pattern of the differentiation process could be obtained. The
experimental data was kindly provided by Michael Cross.
In order to reflect the usage of relatively homogenous cells from a cell line in the

simulation model, the differentiation assay is initialized with a population of 250
cells with a well defined initial affinity, uniformly distributed in the range ainit =
[0.01, 0.1], compare Figure 5.23. The fraction of undifferentiated and committed
cells is evaluated hourly for a period of 9 days. A balanced expression of the N = 3
lineage propensities x1...3(t = 0) = 1/3 is assigned to the cells, such that they are
initially identical for the development in each of the three experimentally observed
cell types: granulocytes, macrophages and erythrocytes. Both, the instructive
and the selective scenario of lineage specification have been applied to analyze
the observed development of the cultures under granulocyte/macrophage (M) or
erythrocyte (E) stimulating conditions.
To simulate the differentiation of FDCP-mix populations in the presence of

growth factors in the instructive scenario, the corresponding rewards mi = ni

of the dissipative control regime are adapted in favor of the relevant fates. The
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5. Results I: Dynamics of lineage specification

simulation results are compared to the experimental data in Figure 5.24(A), (B)
for both the differentiation in M- and E- media. The lineage specific values for the
rewards mi = ni in the dissipative regime are the only difference assumed for the
different media conditions. During erythroid development, erythrocytes mature
from erythroblasts. Since it is possible to distinguish between these cell types
morphologically, erythroid cells are subdivided for the phenotypic mapping (cf.
Section 4.3.3), such that the committed cell stage now comprises early committed
cells (erythroblasts) and mature cells (erythrocytes). Figure 5.24 confirms that
the simulation model in the instructive scenario is able to quantitatively account
for the temporal development of the proportions of observed cell types in both, M-
and E-media. Parameter settings for the simulations are provided in Appendix
D.6.
Alternatively, the experimental data can be described in the context of selec-

tive lineage specification, demonstrated in Figures 5.24(C), (D). As discussed in
Section 5.2 the lineage specific rewards in the dissipative regime are identical for
all three observed lineages (m1 = m2 = m3) such that they are all promoted with
equal likelihood. However, the simulations for the different culture conditions (M
and E) differ in the choice of the lineage specific cell death intensities φi. Whereas
under M conditions the erythroid cells undergo cell death, the situation is different
under E conditions in which the selection process leads to the preferential removal
of cells committed towards the granulocyte and macrophage lineages.
In both, the instructive and the selective scenario of lineage specification, the

regulating parameters have been adapted to meet the particular experimental
results. However, the agreement of simulation and experiment can be regarded
as a proof of principle that the proposed model is able to adequately account for
differentiation kinetics on the population level. The question remains whether
the model could help to distinguish between instructive and selective mechanisms
governing the process of lineage specification under particular conditions. As
shown above, this is hardly possible on the population level. However, it will be
demonstrated in the next chapters that the developmental process on the single
cell level are more adequate to address this question.

5.5. Summary and additional remarks

The extensive analysis of the system dynamic and the application to a set of rel-
evant experimental results illustrates that the model successfully accounts for the
critical phenomena of lineage specification stated in Section 4.1. In particular the
model is suited to account for the central aspects of restriction of lineage potential
and the generation of diversity (criteria C1 and C2). This is substantiated by the
application of the model to results on the differentiation of single cells and paired
progenitors in Sections 5.4.1 and 5.4.2. As the model of lineage specification is
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Figure 5.24.: Lineage contribution of FDCP-mix cells.
Experimental results for differentiation in M-medium (A,C) and E-medium
(B,D) are illustrated by the bars (assessed by morphology counts on a daily basis)
as a function of time. The simulation results are indicated by the corresponding
lines (blue - granulocytes; green - macrophages; orange - committed erythroblasts;
red - mature erythrocytes; grey - undifferentiated progenitors). (A,B) correspond
to the instructive mode of lineage specification, (C,D) to the selective mode.

constructed as an “accelerated drift” towards a random lineage rather than an
immediate decision the aspects of temporal extension and reversibility are natu-
rally integrated as well (criterion C3). The applicability of an instructive and a
selective mechanism of lineage specification are strikingly demonstrated using the
time course data on the differentiation of the FDCP-mix cell line under differ-
ent culture conditions (criterion C4). However, the close concordance of this two
fundamentally different mechanisms to explain the same data set hints towards
a structural deficiency of most population based approaches. It is precisely the
averaging over a multitude of cells that erases minor differences on the single cell
level. Therefore a view is advocated analysing lineage specification not only as a
population phenomena but on the basis of individual cellular developments. Us-
ing the proposed model the necessary methodology is presented in the subsequent
chapters.
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5. Results I: Dynamics of lineage specification

It appears as the logical continuation of the outlined research to couple the
regulation of lineage specification, this means the regulation of the actual lineage
contributions, to the presence and concentration of progenitor and mature cells.
It has been shown experimentally as well as theoretically that there exist multi-
ple feedback loops (mostly facilitated by cytokine concentrations) between more
mature cell stages and the stem cell compartment [157, 224]. However, the cur-
rent model lacks a sufficient description of the development of later cell stages.
Therefore, the introduction of possible feedbacks would be rather speculative and
can not go beyond a general statement. An extension and adaption of the model
approach is scheduled to include aspects of cell maturation.
Similar restrictions apply to the study of lineage bias phenomena. It has been

shown in a number of experiments that hematopoietic stem cells can obviously
inherit a certain preference in their lineage contribution [44, 45]. Addressing this
data in the concept of the presented model is subject to another project which is
currently underway.

The main results within Section 5.4 have been published in [114]. The model
simulations for this publication are based on a linear reward function in the re-
gressive control regime instead of the sigmoid reward function used throughout
this thesis (compare Section 4.3.2). However, the results are basically identical as
this is a minor change under the applied conditions.
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6. Methods II: Characteristics of single cell
development

Classical cell culture approaches address cellular proliferation and differentiation
potential on the population level. However, the application of time-lapse video
monitoring combined with appropriate analysis methods will soon allow to map
these observables on the level of single cells. The resulting data structure repre-
sents the developmental genealogy of each individual cell, in which all the popula-
tion measures are encoded. The following two chapters of this thesis are devoted
to the statistical analysis and comparison of the resulting data type in a defined
mathematical framework.

6.1. Records of single cell development

The stem cell model presented in this thesis is based on the simulation of individ-
ual cells. Although the same set of rules apply to all these cells, each and every
cell can obey an individual position in the space of their defining variables, i.e.
cell cycle position c, attachment affinity a, signaling context A or Ω , and lineage
propensities x. As outlined in Section 3.4 this individual position influences the
tendency for certain future developments. The cell-based character of the mod-
eling approach allows studying cell fate decisions on the level of single cells and
their progeny and to record all relevant changes in their defining variables. For the
example of the cell differentiation assays for the FDCP-mix cell cultures studied in
Section 5.4.3, two such records are shown for randomly chosen cells in Figure 6.1.
These tree-like structures are more generally referred to as cellular genealogies.
As discussed in Section 2.4 a comparable type of data can be obtained by

analyzing time lapse videos taken from appropriate cell cultures. By keeping track
of the position and the divisional history of each initial cell one obtains a number
of unique examples of developmental sequences as they occur under the particular
assay conditions. The suitability of this approach has been shown recently in a
number of relevant publications [126, 128, 130, 225, 226].
The nature of the data type, i.e. in situ records of single cell development, is

closely similar between experimental data and the proposed model framework. On
one hand the experimental data will contribute to a refinement of the simulation
model (e.g. with respect to the distribution of cell cycle times) but on the other
hand the model analysis allows a backward interpretation of the data in the light
of the model. The identification of similarities between experimental and simu-
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6. Methods II: Characteristics of single cell development

A B

Figure 6.1.: Examples of simulated cellular genealogies.
The two examples shown in (A) and (B) correspond to single cell records from
the simulated population experiments shown in Figures 5.24(C), (D), respectively.
The vertical lines represent division events and the horizontal lines represent cells.
The color coding corresponds to Figure 5.24, too. Further details of cellular
genealogies are described in the main text below.

lated data could reveal more insights about generic principles that govern cellular
development. However, due to technical limitations the availability of experimen-
tal data is still limited, although it is expected to gain more importance in the
next years.
In cell culture experiments the overall expansions and the differentiation po-

tential can be easily compared between different cell culture conditions. However
a comparison of the numerous corresponding cellular genealogies is more chal-
lenging. In particular, the complexity of the particular type of “tracking data”
requires a rigorous characterization and a set of well suited measures for statistical
evaluation. Moreover, a large set of such cellular genealogies can reveal typical
patterns of cellular development and clonal heterogeneity which are hardly visible
by analyzing single realizations or observing the population average. Based on
this motivation the following topics are addressed:

• Establishment of a formal characterization of cellular genealogies for the
analysis of the divisional history (i.e. topology of the tree-like structure)
and for the storage of cell specific and time dependent parameters such as
size, morphology, fluorescence activity etc.
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6.2. Formal characteristics of cellular genealogies

• Development of a set of measures for the comparison of different sets of
cellular genealogies with a focus on:

– measures of clonal expansion

– measures of asymmetry within cellular genealogies

– measures of correlation between characteristic events

• Comparison of methods for representing cell fate decisions within cellular
genealogies.

The introduction of the terminology and the proposed measures within this
chapter is accompanied by two examples of their application in the context of the
simulation model in the next chapter.

6.2. Formal characteristics of cellular genealogies

Cellular genealogies are derived from the tracking of a single, specified cell object
(generally referred to as root cell) and its entire clonal offspring. Technically, a
cellular genealogy is an unordered tree graph G = (C,D) composed of a set of
edges C = {ci, i = 0 . . . n} representing cells and a set of branching points D =
{dj, j = 1 . . . m} representing division events. Unordered trees are characterized
as trees in which the parent-daughter relationship is significant, but the order
among the two daughter cells is not relevant.
Each genealogy is uniquely identified by its root cell c0 which is the cell that

had been chosen as the initial cell of the tracking process. The root cell and all its
descendents are ordered into subsets Cg according to their generation g, starting
with the root cell c0 ∈ C0 and followed by the daughter cells in the first to the
gth generation. Furthermore, cells are characterized by their future development,
i.e. to each cell ci belongs either a subsequent division event dj, giving rise to
two daughter cells (ci ∈ Cdiv, with Cdiv representing the subset of all cells which
undergo division), or the cell’s existence terminates without a further division
either by cell death (ci ∈ Cdeath, with Cdeath representing the subset of all cells
which die within the observation period) or by termination of the tracking process
(ci ∈ Cterm, with Cterm representing the subset of all cells with censored observation,
i.e. no information about future cell fate is available). Final cells are termed leaf
cells, i.e. Cleaf = Cdeath ∪ Cterm. The relation rpq between any two cells cp and cq is
defined as a topological distance which measures the number of divisions between
these cells. Daughter cells that share the same parental cell are termed siblings. A
schematic representation of a cellular genealogy and an illustration of the distance
measure are provided in Figure 6.2.
The temporal dimension of the tracking process is usually encoded in the length

of the edges; however this is an associate information rather than a genuine topo-
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Figure 6.2.: Schematic sketch of a cellular genealogy.
Within the given five generation genealogy the thin horizontal lines represent the
cells ci whereas the divisions dj are marked by the thick vertical bars. Colors
correspond to the cell’s generation g. The horizontal dimension is time t with the
founding root cell c0 indicated on the left side (grey, generation g = 0). Thus, the
length of the horizontal lines represents the duration of the cell’s existence and
is a measure of the cell cycle time τc. Final cells on the right side are called leaf
cells (marked with an asterisk). The degree of relation rpq between any two cells
cp and cq is given by the number of divisions between them. For example, cells
c6 and c8 have a degree of relation r6,8 = 4 (separated by the divisions d3, d1, d2,
and d4). Using the same measure of relation, the branch length from the root c0
to the leaf cells is determined. For the particular example the longest branch is
r0,14 = 4 and the shortest branch is r0,6 = 2.

logical parameter. Similarly, any additional and potentially time-dependent infor-
mation that has been recorded during the tracking process can be attributed to
the corresponding edges ci, such as the spatial position, the size of the cells, the
expression of certain lineage specific marker genes, or the fluorescence activity of
particular cell labels. Specifically, in the case that data on the lineage commitment
is available, a fate information χi(t) is assigned to the cell ci. Different methods
for this assignment and detailed examples are presented in Section 6.4.

6.3. Topological measures for cellular genealogies

The quantitative assessment of cellular genealogies is the basis for their compara-
tive analysis. Restricting the view to the parent-daughter relationship one obtains
an unordered tree structure that can be characterized by suitable topological mea-
sures. This topological structure is the defining feature of all cellular genealogies
and is independent of any experiment-specific, additional information (e.g. spatial
information, fluorescence measurements) assigned to the tracked cell objects.
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One might recall that the analysis of tree like structures has a long tradition
in phylogenetics and evolutionary biology (see the historical overview in [227]).
Comparing different phylogenetic trees, the influence of external pressure on the
evolutionary development is characterized and linked to associated patterns in
the tree shape. Although some of the proposed measures within this thesis pick
up the idea of shape measures in phylogenetics the general approach in the anal-
ysis of cellular genealogies starts from a different point: Whereas in statistical
phylogenetics a certain tree structure represents are rather unique set of events
typical for a certain species, the analysis of cellular genealogies is based on the
comparison of many heterogeneous, albeit similar pedigrees derived under iden-
tical culture conditions. Also the interpretation of the typical events like cell
death/extinction and division/branching is different for cellular genealogies as for
phylogenetic trees, changing the focus to other relevant questions.
The following list of suitable topological measures for cellular genealogies has

been derived after extensive analysis of a multitude of potential measures using
simulated cellular genealogies. The presented measures focus on a distinction be-
tween cellular genealogies that have been derived under different experimental
conditions with respect to expansion, symmetry and the occurrence of cell death
events. Furthermore, these measures proofed useful to quantify the heterogeneity
occurring within a set of genealogies that has been derived under identical condi-
tions. The list is by no means complete and may require extension for different
experimental questions.

• Total number of leaves L and the total number of divisions D. The
total number of leaves L is a suitable measure for the clonal expansion of a
particular root cell. The index L counts all cells ci of a certain genealogy
that do not terminate with a further division. The number of divisions
D occurring in the same genealogy is equally well suited for estimation of
cellular expansion since D = L − 1. The example of a cellular genealogy
shown in Figure 6.3 has L = 11 leaves (marked by the asterisks) and D = 10
divisions (indicated by the thick vertical bars). Population averages of these
values are closely related to the overall expansion of the cell culture.

Beyond the average values, the width of the distribution of the number
of leaves L (or divisions D, respectively) originating from different cells
under the same culture conditions is an indicator of population inherent
heterogeneity in the clonal expansion potential that cannot be determined
on the population level alone.

Formally, the total number of leaves L is given as:

L =
∑

ci∈C

ID, with ID =

{

1 for ci ∈ Cterm

0 else
(6.1)
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Figure 6.3.: Leaves and branch length.
Example of a cellular genealogy with L = 11 leaves (marked by the asterisks)
and D = 10 divisions (indicated by the black vertical bars). For each leaf cell
the branch length B is provided. Color coding of the cells corresponds to the
generation g (root - grey, g = 1 - magenta, g = 2 - blue, g = 3 - green, g = 4 -
dark red).

• Branch lengths B. The branch length B = Bk measures the number of
divisions between the root cell c0 and a specific leaf cell ck. The complete
set of branch lengths for all leaf cells of a given genealogy is a measure
of the proliferative activity of the root cell, but, it also accounts for the
heterogeneity within a single expanding clone. Both these aspects are briefly
discussed.

Due to the exponential nature of cellular expansion, the average branch
length B̄ within a particular genealogy is dominated by the maximal branch
lengths max(B). To circumvent this inherent bias, a characteristic branch
length of a genealogy Bchar is proposed for which the different branch lengths
Bk are weighted by the generation g in which the leaf cell occurs. Intuitively
speaking, Bchar is the expectation value of the branch length by randomly
following the genealogy from the root cell c0 to the leaves. Such a normal-
ization process ensures that longer and more ramified branches are weighted
less compared to shorter branches.

The distribution of branch lengths Bk within a particular genealogy charac-
terizes the heterogeneity within the progeny of a single expanding (root) cell.
However, these distributions are always dominated by the longer branches
due to the exponentially increasing number of leaf cells. Therefore, it can
be argued that the relation between the extreme values min(B) and max(B)
is more instructive. Defining the range of branch lengths Brange as the dif-
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6.3. Topological measures for cellular genealogies

ference between the minimal and the maximal branch lengths provides a
simple measure to quantify this heterogeneity.

Formally, the branch length Bk is defined as the topological distance r0,k
between the root cell c0 and a leaf cell ck ∈ Cterm. The characteristic branch
length of a genealogy Bchar is calculated as

Bchar =
∑

ck∈Cterm

(Bk/2
gk) (6.2)

in which gk refers to the generation of leaf cell ck. The range of branch
lengths Brange for a certain genealogy is given as Brange = maxk(Bk) −
mink(Bk).

For the example of the cellular genealogy depicted in Figure 6.3 the branch
lengths B are provided for each individual leaf cell. For this genealogy, the
characteristic branch length evaluates to Bchar = 1 · 2

22 +2 · 3
23 +8 · 4

24 = 3.25
and the range of branch lengths to Brange = 4− 2 = 2.

• Symmetry index (weighted Colless’ index Cw). Tree shape measures
with a focus on symmetry have a long tradition in the analysis of phylo-
genetic trees [227, 228, 229]. These measures are commonly used to detect
imbalances that testify the regulation of diversity in ecological communities.
Applied to the situation of cellular genealogies these measures can provide
an understanding of the balance between self-renewal and differentiation, as
well as on the action of cell death processes.

A particular useful measure is the Colless’ index of imbalance C [230]. This
index compares the number of leaves emerging from the two daughter cells
cdaughter;1 and cdaughter;2 resulting from the division of the parent cell ci. Col-
less’ index C sums the difference in the number of leaves subtended by the
two daughter cells for all divisions within the genealogy and normalizes by
dividing with the largest possible score. Colless’ index increases from C = 0
for perfectly symmetric genealogies to C = 1 for completely asymmetric
genealogies. However, the classical Colless’ index puts the same weight on
asymmetries that occur late in development compared to earlier events. This
is contrary to the common biological perspective on the balance between
stem cell self-renewal and differentiation which assumes that asymmetries
are most pronounced in the early divisions. Especially in the case of large,
exponentially expanding genealogies, such early events are underestimated
by the classical Colless’ index compared to a vast amount of expansion events
in latter stages of development. Therefore, a weighted Colless’ index Cw is
proposed explicitly accounting for the exponential expansion within cellular
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Figure 6.4.: Colless’ index.
For three encircled divisions the contributions to the weighted Colless’ index Cw

are outlined below each event. The color-coded pairs of parenthesis on the right
side summarize the number of leaves subtending from each of the relevant daughter
cells. The exponent of the denominator corresponds to the generation g of the
mother cell. The coloring scheme of the cells indicates their generation g (compare
Figure 6.3).

genealogies. In contrast to the classical Colless’ index C, the weighted Col-
less’ index Cw sums over the differences in the number of leaves emerging
from two daughter cells which are weighted according to the generation in
which the asymmetry occurs.

Formally, the classical Colless’ index of imbalance is given as

C =
2

(L− 1)(L− 2)

∑

ci∈Cdiv

|Li;1 − Li;2|. (6.3)

Li;1, Li;2 refer to the number of leaves subtended by the two daughter cells
of cell ci. In contrast, the weighted Colless’ index Cw is given as

Cw = N−1
C

∑

ci∈Cdiv

(1/2gi)|Li;1 − Li;2| (6.4)

The generation gi refers to the generation of the parental cell ci. Cw is
normalized with a constant NC which corresponds to the maximal possible
value of the Colless’ index for a completely asymmetric tree with L leaves.
NC is defined as

NC =
∑

j=0...(L−3)

(L− 2− j)

2j
(6.5)
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For the example of the cellular genealogy in Figure 6.4 contributions to the
weighted Colless’ index Cw are outlined for the encircled division events.
The denominator results from the weighting with the generation g of the
mother cells.

• Cell death index A. Programmed cell death (also referred to as apoptosis)
potentially plays an important role in regulation of hematopoiesis in vivo
(compare Section 2.3.2) and is also regularly observed in cell cultures. The
cell death index A measures the observed frequency of cell death events
and is, therefore, an estimate of the probability of cell death occurrence.
To account for systematic effects related to cellular development, it seems
appropriate to consider the cell death index A as a function of the current
cell state and/or the generation g within the genealogy. Therefore, the cell
death index Ag is calculated as the ratio of the number of cell death events
observed for cells in generation g and the number of all cells existing in the
same generation.

In contrast to the cell death index Ag itself, a generalization to pairs of
sibling cells allows to identify potential correlations of cell death events and,
therefore, to reveal particular asymmetries in cell fates. The idea behind this
approach is that in case of statistically independent events, the probability
of observing a particular combination of events in two siblings (i.e. cell death
in none, one or both siblings) equals the product of the probabilities of the
corresponding events for individual cells. Thus, if cell death events would
occur independently of each other, the latter probabilities could be estimated
by (1− Ag)2, 2Ag(1− Ag), (Ag)2, respectively. Using the differences in the
observed and the (under the independence assumption) expected frequencies
of these pair-wise events, it is possible to calculate the so called mutual
information (MI) of all sibling pairs within a particular generation. TheMI,
which always has values between 0 and 1, is a measure of the information
about one of the two events that is provided by the other one. In the
particular case,MI = 0 would imply that one cannot obtain any information
about the cell death occurrence of one sibling cell from knowing the fate
of the corresponding daughter cell, as expected under the applied model
assumption of completely random cell death.

Formally, the cell death index Ag is an estimator of the probability for a cell
death event occurring in generation g of a certain genealogy. It is calculated
as

Ag =

∑

ci∈C
ID

∑

ci∈C
JD

(6.6)

in which the indicator function ID =

{

1 for ci ∈ {Cdeath ∩ Cg}

0 else
is used to
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count the number of cell death events in generation g and the indicator

function JD =

{

1 for ci ∈ Cg

0 else
to determine the total number of cells that

exist in the same generation g.

The mutual information of two (discrete) random variables X and Y is
defined as

MI(X, Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log2

(

p(x, y)

p(x)p(y)

)

(6.7)

in which p(x, y) is the joint probability distribution ofX and Y , and p(x) and
p(y) are the marginal distributions of X and Y , respectively. I.e., the MI is
the expected log-likelihood difference between the bivariate model and the
product of the marginal models. In the particular case of cell death events,
one assumes identical probability distributions for both sibling cells. There-
fore, the expected probabilities for the three possible events (i.e. none (p0),
one (p1) or two (p2) cell death event per sibling pair) under the hypothesis
of statistical independence of the two siblings can be estimated by (1−Ag)2,
2Ag(1 − Ag), (Ag)2, respectively. Estimating the bivariate probabilities by
the observed relative frequencies (fi, i = 0, 1, 2) of the aforementioned events
(pi, i = 0, 1, 2), leads to the estimated mutual information per generation g:

MIg = f0 log2

(

f0
(1− Ag)2

)

+ f1 log2

(

f1
2Ag(1− Ag)

)

+ f2 log2

(

f2
(Ag)2

)

(6.8)

For illustration of the MI measure, two genealogies are shown in Figure 6.5.
Although these genealogies have identical values for the number of leaves L,
the characteristic branch length Bchar and the total number of death cells
they differ significantly with respect to correlation of the cell death events.
Whereas in Figure 6.5(A) the cell death events are rather isolated, they
always appear among sibling cells in Figure 6.5(B). This leads to increased
values of the mutual information measure MI in the latter scenario.

It should also be noted that this approach can be generalized to other events
characterizing the fate of sibling cells. A related but less analytical approach
to correlate fluorescence expression between closely related cells, indicating
synchronized epigenetic remodeling in embryonic stem cells, has been pub-
lished recently [130].

• Minimal distance between characteristic events R. Cellular genealo-
gies retain information about the relatedness of certain characteristic cellular
events like the occurrence of cell death, changes in the cells morphology, or
the expression of cell fate characteristic markers. Beyond the mutual infor-
mation MI, the topological distance rij between such characteristic cellular
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6.3. Topological measures for cellular genealogies

A B

Figure 6.5.: Mutual relation between cell death events.
The genealogies in (A) and (B) have similar topologically features (L = 14,
Bchar = 3.75, Brange = 1, C = 0.05, A3 = 1/4, A4 = 1/3 for both genealogies).
However they differ with respect to occurrence of cell death events. Whereas in
(A) the cell death events are rather isolated, they always appear in sibling cells in
(B), resulting in differences for the weighted Colless’ index (Cw = 0.068 in (A);
Cw = 0.136 in (B)), the mutual information measures MIg (MI3 = 0.036 and
MI4 = 0.076 in (A); MI3 = 0.244 and MI4 = 0.276 in (B)) and the minimal
distance R (R = 3 in (A); R = 1 in (B)). Coloring of the cells indicates their
generation g (compare Figure 6.3)

events occurring in cells ci and cj has been identified as a suitable measure of
their relation. In particular, it is the minimal distance (denoted as Ri) be-
tween a characteristic event of cell ci (e.g. cell death) and the closest similar
event of another cell cj that proved useful for the identification of whether
the events are rather isolated or appear closely related. If at least two char-
acteristic events occur within a given cellular genealogy, a minimal distance
Ri can be calculated for each of them. To provide a unique measure for each
cellular genealogy, the average R over these individual minimal distances
Ri is calculated separately for each genealogy. Lower minimal distances R
indicate a closer relation between the events, possibly due to similar devel-
opmental stages of the cells in question, whereas a tendency towards higher
minimal distances is more likely caused by general effects independent of the
cell state.

Formally, the individual minimal distance Ri for a characteristic event oc-
curring for cell ci is defined as

Ri = min
cj∈Cchar

(rij) (6.9)

in which Cchar refers to the set of cells for which a characteristic event has
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6. Methods II: Characteristics of single cell development

been observed and rij is the topological distance between them. The index
Ri (and consequently the average R) is not defined for genealogies with less
than two such characteristic events in Cchar.

An illustrative example for the detection of closely related cell death events
is provided in Figure 6.5. Although the cellular genealogies have the same
number of cell death events, the individual distance to the next event is
always Ri > 1 for the cellular genealogy in Figure 6.5(A) but Ri = 1 for all
cell death events in Figure 6.5(B).

6.4. Assignment of lineage fates

The limitations in accessing the “commitment state” of a cell in situ clearly ef-
fects the assignment of a the fate information χi to the corresponding cell ci.
Approaching this phenomenon from the model perspective is a good option to
appreciate the two fundamentally different views on lineage assignment and their
implications for the interpretation of cell division events.
Within the proposed simulation model, lineage specification is represented as

a continuous process progressively restricting the number of available develop-
mental options. A simple phenotypic mapping, introduced in Section 4.3.3 allows
attributing cells as uncommitted or committed to a particular cell type although
a small but continuously decreasing probability for conversion remains. This in-
formation about the ”commitment state” of a cell is available throughout the
whole tracking process for each individual cell. Therefore, it can be represented
in the cellular genealogies in a straight forward fashion, which is referred to as the
prospective view : Applying the outlined mapping procedure, a cell ci is marked
according to its current internal propensity levels x(t) as undifferentiated χi(t) = 0
(for x∗

j(t) < xcom) or committed to a certain lineage fate χi(t) = 1, 2, . . . , N (for
x∗
j(t) > xcom) with N denoting the number of possible lineages. Figure 6.6(A)

shows a typical cellular genealogy in which lineage information is assigned in the
prospective view.
All divisions dj within this view are characterized by comparing the lineage

specification state of the parent cell (prior to division) to the state of the daughter
cells (immediately after division). This results in two classes of division events:
undifferentiated symmetric divisions if an undifferentiated parent gives rise to two
undifferentiated daughters (χparent = χdaughter;1 = χdaughter;2 = 0) and symmetric
divisions if a committed parent gives rise two daughters of the same fate (χparent =
χdaughter;1 = χdaughter;2 > 0). Since cell divisions in the underlying model system
do not involve any differentiation event and are thus symmetric by definition,
asymmetric divisions do not occur in the prospective view.
In contrast to the simulation model, lineage assignment is a difficult task in

the experimental situation, especially if the cellular genealogy needs to be main-
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6.4. Assignment of lineage fates

tained. Using classical time lapse microscopy of a differentiating cell culture, the
only, currently available, non-invasive method for this assignment is the identi-
fication of cell type specific changes in the cell’s morphology. However, changes
in morphology are hard to identify and occur rather late compared to changes in
the transcriptional activity of cell fate specific genes. Novel techniques that are
already developed for hematopoietic stem and progenitor cells [131], allow the tar-
geted placement of genes coding for the expression of fluorescence proteins under
the control of particular lineage specific promoters (“reporter genes”). By use of
these reporter genes it should be possible to obtain information about the lineage
decisions during the tracking process. Currently, there are only preliminary stud-
ies using this technique in the context of single cell tracking approaches; however
it is the most promising strategy for the prospective assignment of lineage fates
in a cellular genealogy.
An already applied technique for the identification of lineage fates in cellular

genealogies relies on staining methods. This approach requires the conservation of
the final, spatial configuration of the tracking procedure in order to allow a unique
mapping into the genealogy. This is only feasible for adherent cell cultures as they
are used e.g. for the tracking of neural stem and progenitor cells. However, this
assignment of lineage fates refers only to the final configuration and earlier decision
events have to be estimated in a retrospective view. Given that a lineage fate χi is
assigned to each leaf cell, the fate of all cells within the genealogy is determined
recursively as follows: If both daughter cells of a parental cell belong to the same
lineage, then the same lineage is attributed to the parent cell (χparent = χdaughter;1 =
χdaughter;2). The particular division is characterized as symmetric. In contrast, if
the daughter cells are of different lineages or one is undifferentiated (χdaughter;1 *=
χdaughter;2), then the parent cell is marked as undifferentiated (χparent = 0) and
the parental division is counted as asymmetric. Two undifferentiated daughter
cells (χdaughter;1 = χdaughter;2 = 0) derive from an undifferentiated parent (χparent =
0) due to an undifferentiated symmetric division. Evaluating the same cellular
genealogy as Figure 6.6(A) in the retrospective view (i.e. only based on the lineage
fate of the leaf cells) a modified version of the genealogy is obtained as shown in
Figure 6.6(B). There, the progeny of a parental cell that only gives rise to one cell
lineage is always shown in the same color.
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6. Methods II: Characteristics of single cell development

prospective view

retrospective viewB

A

Figure 6.6.: Prospective versus retrospective view for the lineage assign-
ment.
(A). The sketch shows an example genealogy for which the lineage fate is assigned
in the prospective view. Coloring of the cells indicates the state of commitment as
given by the phenotypic mapping, i.e. “the color coding” of a cell might change
during the cells existence from uncommitted (grey) to either the “orange” or the
“green” lineage depending on the dominating lineage propensity x∗i . In contrast,
for the identical genealogy in (B) the lineage fate is assigned recursively based on
the lineage fate of the daughter cells (i.e. backwards from the final configuration
shown on the right). Colors for the divisions are assigned as follows: undiffer-
entiated symmetric divisions - magenta, symmetric divisions of committed cells -
light blue, asymmetric divisions (only in the retrospective view) - red.
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7. Results II: Quantitative analysis of ’in silico’
cellular genealogies

Within this chapter, the statistical measures for cellular genealogies and the differ-
ent approaches for the lineage assignment are applied to different sets of reference
data. Since practical problems with the generation of sufficiently long and qualita-
tively analyzable time lapse videos of suitable cell cultures as well as difficulties in
the automatic identification and tracing of single cells in current image-processing
techniques limit the availability of experimentally derived cellular genealogies, the
reference data is taken from the single-cell based model introduced in the previous
chapters. Based on this model, it can be analyzed how changes in the particular
(in silico) growth conditions influence the topology of the cellular genealogies and
how the imprinted mechanisms of lineage specification can be reextracted from
the topology information.

7.1. Comparing cellular genealogies under different
growth conditions

7.1.1. Generation of cellular genealogies under different growth
conditions

In order to test the different measures for the quantitative characterization of
cellular genealogies three different ”in silico conditions” are studied which are
inspired by typical cell growth scenarios.

• First, an empty model system is initialized with one “model stem cell” which
undergoes massive expansion. This is referred to as the growth scenario.

• Thereafter, the model system establishes a stable pool of self-renewing cells
that simultaneously contribute to a pool of differentiating cells. This is
referred to as the homeostatic scenario.

• Changing the system parameters such that the self-renewal ability of the
cells is lost, the whole population of cells undergoes final differentiation and
subsequent cell death. This is referred to as the differentiation scenario
which is inspired by in vitro cultures of stem and progenitor cells lacking
self-renewal promoting conditions.
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7. Results II: Quantitative analysis of ’in silico’ cellular genealogies

Lineage specification is realized such that each of the N = 3 possible lineage
fates occurs with the same probability (i.e. balanced rewards mi = ni = m). For
the derivation of the cellular genealogies in the growth scenario 400 independent
model realizations are tracked for 300 hours (one hour corresponds to one time
step of the simulation), each initialized with one single stem cell. Only in this
situation with an empty model system, the strong initial expansion is observed.
In contrast, for the homeostatic scenario and for the differentiation scenario all
cells in the homeostatic stem cell compartment of one particular model realization
are uniquely marked and subsequently tracked for the next 300 hours. Typically
around 400 cells are tracked in this process, similar to the 400 independent real-
izations in the growth scenario. For the homeostatic and differentiation scenario,
there is no statistical difference in choosing individual cells in different realiza-
tions or within the same realization as long as the systems are initially in the
homeostatic situation (i.e. stable numbers of stem cells in signaling context A and
Ω ). A schematic representation of the cell population dynamics for the different
scenarios and a typical characteristic cellular genealogy for each scenario is shown
in Figure 7.1. Further parameter settings for these simulations are provided in
Appendix D.7.
For the exploration of the effects of cell death on the cellular genealogies, a

background cell death is applied with constant intensity ΦB = φ for all cells in
G1-phase (cf. Section 4.3.4). Generally, such an effect might also occur in other
stages of the cell cycle. However, the focus of this analysis is directed towards the
(quantitative) characterization of the general impact of cell death events on cellular
genealogies rather than on the details of the biological process. The simplifying
assumption of restricting cell death events to G1-phase does not qualitatively
change the results wherefore the analysis is restricted to this scenario without loss
of generality. A discussion of selective cell death as a regulating process in lineage
specification (selective lineage specification, compare Sections 4.3.4 and 5.2.3) and
its effect on the resulting cellular genealogies is provided Section 7.2.

7.1.2. Topological characterization and comparison

The topological measures introduced in Section 6.3 are now applied to the sets
of cellular genealogies resulting from the above stated simulation scenarios. It
is the central advantage of this comprehensive set of measures to allow for the
quantitative comparison of the different cellular genealogies which goes far beyond
the visual impression as it is provided in Figures 7.1(B-D).
As some of the measures are not invariant under changes of the observation

period their scaling behavior needs to be discussed separately. This is especially
necessary in the case, in which genealogies from experiments with different obser-
vation periods need to be compared. Already in the model situation, saturation
effects (in the growth scenario) or exhaustion (in the differentiation scenario) are
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Figure 7.1.: Simulation scenarios and corresponding cellular genealogies.
(A). Numbers of stem cells in Ω (green) and A (red). At time t=0, the system
is initialized by a single stem cell, that subsequently undergoes expansion. The
corresponding growth scenario is indicated by the first shaded area (observation
period of 300 hours, tracking of 400 individual cellular genealogies in indepen-
dent realizations). Around t=600 the system reaches a dynamically stabilized
equilibrium. For the cellular genealogies of the homeostatic scenario, all stem
cells present at time point t=700 are uniquely marked and subsequently tracked
for 300 hours (second shaded area). Changing differentiation and regeneration
parameters at time t=1500 (blue line), the self-renewal ability of the stem cells
is lost and they undergo terminal differentiation (differentiation scenario). As
in the homeostatic scenario, cellular genealogies are derived by marking all stem
cells present at time point t=1500 prior to the change of parameters and their
subsequent tracking for 300 hours (third shaded area). (B - D). Characteristic
genealogies for each scenario ((B) - growth scenario, (C) - homeostatic scenario,
(D) - differentiation scenario). Colors indicate cell cycle status of the undifferen-
tiated cells and commitment to three possible lineages for the differentiating cells:
grey - undifferentiated proliferating cell (Ω ); black - undifferentiated quiescent
cell (A ); yellow/orange - early/finally committed cell of the “orange” lineage;
light/dark blue - early/finally committed cell of the “blue” lineage; light/dark
green - early/finally committed cell of the “green” lineage.
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Figure 7.2.: Total number of leaves L.
(A) shows histograms of the distributions of the total number of leaf cells L for
the three different scenarios growth, homeostasis and differentiation. (B) provides
corresponding scaling behavior, i.e. median of the number of leaves L (indicated
by the dots and supplemented by the first and third quartiles) as a function of
the observation period (ranging from 100 h to 350 h, shown on x-axis).

not negligible and can lead to a nonlinear divergence from the anticipated behav-
ior. It can be expected that the influence of such effects is even more pronounced
in the experimental situation. Therefore, an additional discussion of the particular
scaling behavior for each measure is provided in the context of the model.

Total number of leaves L. The total number of leaves L has been introduced
as a measure to quantify clonal expansion.
Histograms of the distributions of the total number of leaves L for the three

scenarios (growth, homeostasis and differentiation) are provided in Figure 7.2(A).
Increased values of L in the growth scenario are plausible since the initial expansion
is characterized by high proliferative activity and a shortening of the effective
cell cycle time1, which leads to an increased number of cell divisions during the
observation period for the cellular genealogies. In contrast, the homeostatic and
the differentiation scenario show only moderate expansion as the effective cell
cycle time returns to normal values.
For the validation of the scaling of the topological measures, further sets of

cellular genealogies are obtained which use the same set of root cells but for
which the observation time is varied, ranging from 100 hours to 350 hours. In

1Due to low cell numbers in both signaling contexts A and Ω , cells in Ω are quickly attracted
to change into A after division. However, these cells are also quickly reactivated into Ω to
undergo the next round of divisions, thus leading to an effective shortening of the average
cell cycle times. For further details the reader is referred to [47].
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7.1. Comparing cellular genealogies under different growth conditions

the case of unlimited growth, one would argue the total number of leaves L scales
exponentially with the observation period. As shown by the log-lin plot in Figure
7.2(B) this scaling behavior is verified for wide ranges of the observation period.
The different slopes indicate different overall expansion rates. A saturation occurs
for the differentiation scenario which is caused by the limited proliferative activity
of the differentiating cells within the model. The variance in the number of leaf
cells L is indicated by the error bars (corresponding to the interquartile range) for
the different sets of cellular genealogies. As this is also transformed to the log-lin
scale the variance can only be compared on a relative scale.

Branch lengths B. Similar to the total number of leaves L the characteristic
branch length Bchar addresses the expansion of a cell clone within a given time
interval.
Histograms of the characteristic branch length Bchar for the cellular genealogies

derived under the three different culture scenarios are shown in Figure 7.3(A). It
is evident that the characteristic branch length Bchar is increased in the growth
scenario as compared to the other scenarios. As illustrated above, this effect
is induced by the shortening of the effective cell cycle times as the system has
not reached its equilibrium state, thus allowing more divisions within a fixed
time period. The dominant peak at very short branch lengths in the homeostatic
scenario derives from a population of cells mainly residing in signaling context
Ω rarely undergoing cell division at all. In comparison, almost all cells in the
differentiation scenario are activated into cell cycle and undergo regular divisions.
Therefore, the observed heterogeneity in the observed characteristic branch length
Bchar is rather limited.
As expected, Figure 7.3(B) supports the notion that the characteristic branch

length Bchar scales linearly as the observation period varies. This scaling behavior
results from the direct coupling of the number of subsequent cell divisions to
the duration of the observation. Possible saturation effects that are expected for
experimental realizations are most likely caused by limitations of space, nutrition
and proliferation capacity of the cells.
Both, the total number of leaves L and the characteristic branch length Bchar are

measures for the expansion of cell cultures under different conditions. Although
the total number of leaves L scales exponentially with time and the characteristic
branch length Bchar scales linearly with time, the resulting histograms in Figures
7.2(A) and 7.3(A) are qualitatively related. However, on top of this “classical
population measure” to quantify the expansion of cell cultures, the individual
cellular genealogies give access to the heterogeneity within a cell population. In
this sense it is the variance of the total number of leaves L and of the characteristic
branch length Bchar which indicates that individual cells undergo expansion at a
very different extent.
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Figure 7.3.: Characteristic branch length Bchar.
(A) shows histograms of the distributions of the characteristic branch length
Bchar for the three artificial culture scenarios. (B) provides median values of the
characteristic branch length Bchar (indicated by the dots and supplemented by
first and third quartiles) for different observation periods (ranging from 100 h to
350 h).

The range of branch lengths Brange is a possible measure to address this het-
erogeneity since it quantifies the difference between the shortest and the longest
branch within one genealogy. Histograms for the corresponding distributions are
shown in Figure 7.4(A). The dominance of high absolute values in the growth and
in the differentiation scenario indicates that uniform expansion in all branches
is rarely observed and that the genealogies are characterized by significant differ-
ences in the branch lengths B within individual genealogies. This effect is less
pronounced in the homeostatic scenario. However, the increased occurrence of
cellular genealogies with low characteristic branch length Bchar ≈ 0 (i.e. cells with
extended periods of cellular quiescence, compare Figure 7.3(A)) manipulates this
perspective.
The range of branch lengths Brange scales linear with the observation period, see

Figure 7.4(B). This scaling results from the linear scaling of the maximal branch
length max(B) whereas the minimal branch length min(B) reaches a constant
value for sufficiently long observation periods due to the action of background cell
death. Again, the limitations in the proliferative activity of the differentiating
model cells lead to a saturation effect in the differentiation scenario.

Symmetry index (weighted Colless’ index Cw). Colless’ index C and the
weighted Colless’ index Cw address the question of how proliferation and quies-
cence are balanced on the level of individual cells. However, application of the
classical Colless’ index C requires careful interpretation since all asymmetries are

132



7.1. Comparing cellular genealogies under different growth conditions

growth scenario

Fr
eq

ue
nc

y

0 5 10 15

0
60

homeostatic scenario

Fr
eq

ue
nc

y

0 5 10 15

0
10

0

differentiation scenario

range of branch lengths Brange

Fr
eq

ue
nc

y

0 5 10 15

0
10

0

 0

 2

 4

 6

 8

 10

 12

 50  100  150  200  250  300  350  400

ra
ng

e 
of

 b
ra

nc
h 

le
ng

th
s 

Bra
ng

e

observation period in hours

growth
homeostasis

differentiation

A B

Figure 7.4.: Range of branch lengths Brange.
(A) shows histograms of the distributions of the range of branch lengths Brange

for the three artificial culture scenarios. (B) provides the corresponding median
values (indicated by the dots and supplemented by the first and third quartiles)
for different observation periods (ranging from 100 h to 350 h).

weighted equally, irrespective of whether they occur early or late in development.
Therefore, a weighted Colless’ index Cw has been introduced in Section 6.3 to
account for the exponential expansion within the genealogy putting higher weight
on early asymmetries.

As visualized in Figure 7.5(A), there is a tendency for higher values of the
weighted Colless’ index Cw in the homeostatic scenario. It is here that the bal-
anced situation between quiescence and proliferation leads to a number of highly
asymmetric genealogies (indicated by high values of Cw). However, at the same
time the width of the distribution indicates the appearence of a number of al-
most symmetric genealogies (i.e. low values of Cw). In these, the branches are
committed equally to either continuous proliferation or quiescence. Since cell pro-
liferation is more likely in the growth and the differentiation scenario, average
values of the weighted Colless’ index Cw are slightly reduced indicating higher
numbers of more symmetric genealogies. Generally, the width of distributions for
the weighted Colless’ index Cw indicates that the there is a significant population
inherent heterogeneity in all simulated scenarios ranging from almost symmetric
genealogies to highly asymmetric counterparts.

Figure 7.5(B) illustrates that the weighted Colless’ index Cw does not depend
on the observation period and, thus, resembles an invariant measure of imbalance
in cellular genealogies. In contrast, this scaling invariance does not apply to the
classical Colless’ index C (data not shown).
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Figure 7.5.: Weighted Colless’ index Cw.
(A) shows histograms of the distributions of the weighted Colless’ index Cw for
the three different scenarios growth, homeostasis and differentiation. (B) provides
the corresponding median values (indicated by dots and supplemented by first and
third quartiles) for different observation periods (ranging from 100 h to 350 h).

Cell death index A. The cell death index Ag is introduced to estimate the
probability for the occurrence of a cell death event conditioned on the particular
generation g. This measure can be used to account for changes of the particular
probability during the course of differentiation.

Unlike in the experimental situation, in which the role of cell death / apoptosis
potentially changes in the course of differentiation, the random occurrence of the
background cell death in the simulation model makes a distinction for different
generations g obsolete. For simplicity, a generalized cell death index A averages
over all generation-depended values Ag for each genealogy (except the root cell
generation). Histograms of the corresponding distributions are shown in Figure
7.6(A). Due to the increased proliferation activation and the resulting shortening
of G1 phases in the growth scenario, the cell death index A is reduced compared
to the other scenarios.

Within the simulated scenarios, cell death occurs with intensity ΦB = φ = 0.02
at each time step in the simulation model. For a typical G1 phase of 12 hours
(corresponding to 12 time steps), the cumulative probability to encounter a cell
death event within one cell cycle is calculated as Φcum

G1 = (1−0.9812) = 0.215. This
value is well approximated by the generalized cell death index A measured from
the simulated genealogies. As shown in Figure 7.6(B), the index values for the
homeostatic and for the differentiation scenario converge towards this analytical
estimate for sufficiently long observation periods. Lower index values for the
growth scenario are plausible, since shortened cell-cycle times (by shortening of
G1-phase, see [47]) reduce the probability of induced cell death.
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Figure 7.6.: Cell death index A.
In (A) three histograms are shown for the distributions of the cell death index A
in the growth, homeostasis and differentiation scenario. (B) provides the corre-
sponding median values (indicated by the dots and supplemented by the first and
third quartiles) for different observation periods (ranging from 100 h to 350 h).

Minimal distance between characteristic events R. The minimal topolog-
ical distance between characteristic events R is a measure to quantify whether
such events appear correlated between closely related cells or whether they occur
isolated within the cellular genealogy.

Histograms in Figure 7.7(A) show the distribution of the average minimal dis-
tances R in the three relevant model scenarios. By definition, genealogies with
less than two cell death events are excluded from the calculation of the minimal
distance measure R. Generally, the minimal distances R between cell death events
are rather similar for the three different model scenarios due to the underlying as-
sumption of randomly occurring cell death events acting identically in all three
scenarios. However, since cell death events are less likely in the growth scenario
(compare cell death index A in Figure 7.6(A)), the median of the average minimal
distances R is slightly increased compared to the other two scenarios.

For the simulated culture scenarios, in which background cell death occurs ran-
domly with intensity ΦB = 0.02 during G1 phase, the minimal distance R appears
to stabilize around R = 2 for sufficiently long observation periods. This behavior
is illustrated in Figure 7.7(B).

Briefly summarizing, the application of the proposed measures to three generic
model scenarios illustrates their potential for the application to experimental data.
In the first place, averages over the single cell measures (e.g. the number of
leaves L and the characteristic branch length Bchar) sufficiently reproduce overall
population data (e.g. on cellular expansion). However, beyond these population

135



7. Results II: Quantitative analysis of ’in silico’ cellular genealogies

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 50  100  150  200  250  300  350  400m
in

im
al

 d
is

ta
nc

e 
be

tw
ee

n 
ce

ll 
de

at
h 

ev
en

ts
 R

observation period in hours

growth
homeostasis

differentiation

growth scenario

Fr
eq

ue
nc

y

0 1 2 3 4 5

0
30

homeostatic scenario

Fr
eq

ue
nc

y

0 1 2 3 4 5

0
20

40

differentiation scenario

minimal distance of cell death events R

Fr
eq

ue
nc

y

0 1 2 3 4 5

0
20

40
BA

Figure 7.7.: Minimal distance between characteristic events R.
In (A) histograms are provided for the distributions of the minimal distance
between characteristic events R for the three artificial culture scenarios. (B)
provides the median values of R (indicated by the dots and supplemented by the
first and third quartiles) for different observation periods (ranging from 100 h to
350 h).

averages, the distribution of the measures for a set of genealogies provide an
essentially novel access to estimate the population inherent heterogeneity. As a
second advantage, the single cell analysis allows to evaluate certain characteristic
events within the divisional context (e.g. occurrence of cell death, changes in
morphology, lineages decisions). As illustrated above, the generation and the time
point of the occurrence of characteristic cell death events as well as the relation
to similar events occurring in other cells can only be quantified on the single
cell level. Although the proposed list of measures might not be complete and
requires adaption for certain experimentally motivated questions it is a basis for
the evaluation and statistical comparison of larger numbers of cellular genealogies.

7.1.3. Lineage fate assignment

Two different modes of lineage assignment in cellular genealogies, namely the
prospective and the retrospective view, have been introduced in Section 6.4. Com-
paring the cellular genealogies it appears that cells at certain positions are already
marked as committed in the retrospective view, while the prospective view indi-
cates that the lineage specification process has not reached a detectable threshold.
This notion is supported by a typical cellular genealogy of the differentiation sce-
nario which is shown both in prospective and the retrospective view in Figure
7.8(A) and (B), respectively.
In the context of the simulated culture scenarios it is now possible to quantify

this effect. For statistical evaluation, the occurrence of symmetric, asymmetric or
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Figure 7.8.: Prospective versus retrospective view for the lineage assign-
ment.
(A). Lineage fate is assigned in situ for a chosen cellular genealogy of the differ-
entiation scenario in the prospective view, e.g. the “color coding” of a cell might
change during the cells existence if certain critical markers (lineage propensities
in the simulation model) exceed a threshold level (i.e. x∗i > xcom). In contrast,
in (B) lineage fate is assigned recursively based on the lineage fate of the daugh-
ter cells for the same genealogy as in (A). Color-coding of the cells is identical
to Figure 7.1 (neglecting the early committed stages), colors for the divisions
are assigned as follows: undifferentiated symmetric divisions - magenta, symmet-
ric divisions of committed cells - light blue, asymmetric divisions (only in the
retrospective view) - red. In (C) and (D) the probability of occurrence of the
particular division types for each generation g is given for the set of genealogies
derived under the differentiation scenario. The color-coding is identical to (A)
and (B).
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undifferentiated symmetric division events, as defined in Section 6.4, is summa-
rized in Figure 7.8(C) and (D). Starting from a population of rather uncommitted
cells such histograms are plotted against the generation g in which the division
event occurs. Although both fate assignments are based on the same set of under-
lying genealogies, in the prospective view (Figure 7.8(C)) symmetric expansion of
undifferentiated cells in early generations (shown in magenta) is more pronounced
compared to the retrospective view (Figure 7.8(D)). It is the particular construc-
tion of the lineage assignment in the retrospective view (based on subsequent
cellular development and decoupled from the actual intracellular differentiation
state) suggesting an earlier onset of lineage commitment compared to the prospec-
tive view. Although the propensity of a cell for the development in one particular
fate might already be skewed at such an early time point, the prospective view
indicates that fixation is not yet accomplished. This bias is inherently present in
any retrospective assignment of cellular characteristics and marks a central disad-
vantage to the prospective view in which critical steps of the lineage specification
process are determined in their divisional context.
However, the retrospective view is a helpful tool to identify cells that give rise

to more than one lineage fate (multipotent cells). Although the multipotency is
not based on the transcriptional state of the cell but on its future development,
the retrospective lineage assignment is well suited to detect the occurrence and
timing of division events that give rise to different (asymmetric) cell fates. In
this respect the retrospective view illustrates the difference between a functionally
asymmetric division, which does by construction not occur in the underlying model
system, and an asymmetric cell fate, which is commonly detected in the resulting
genealogies.

7.2. Comparing cellular genealogies under different modes
of lineage specification

In Section 7.1 the question has been addressed how different scenarios for cellular
development influence the shape of the resulting genealogies. Beyond a refined
analysis of the population behavior the cellular genealogies can provide additional
information about the underlying mechanisms of developmental process leading
to the particular topological patterns. The idea is similar to the analysis of phy-
logenetic trees in which certain apparent features can indicate periods of fierce
competition and extinction of species during evolution.
In the following the prevalent debate about the instructive versus selective

modes of lineage specification in hematopoietic stem cells (see also Section 2.3.2)
is used as an example to illustrate the potential of cellular genealogies to reveal
underlying mechanisms of their generation. Briefly summarizing, the question
centers around whether lineage specification is an instructive process in which
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a combination of cytokines and cell fate specific signals influences the undiffer-
entiated cells such that certain lineages are promoted whereas others are not or
whether lineage specification is selective in the sense that the intrinsic influence
on the cells is negligible, but the regulation occurs on the level of differential
survival signals. In the latter setting, cytokines promote the survival of certain
lineages whereas cells determined towards other lineages are not supported and
consequently undergo cell death [94, 124, 231].
Experimental approaches based on cell population averages are in most cases

insufficient to answer the outlined questions for two reasons: first, stem cell pop-
ulations have a certain, hardly reducible degree of inherent heterogeneity which
makes it extremely difficult to initiate cultures of identical and synchronized cells.
Second, the population approaches do not capture the temporal evolution and
chronology of cellular development as it occurs within a single cell. However, it
is precisely the development of each individual cell and its progeny that repre-
sents a possible realization of the developmental sequence and retains much of the
necessary information: on the correlations between differentiation and cell cycle
regulation, on the timing of lineage specification processes and cell death events
as well as on the role of asymmetric developments.
The comprehensive mathematical model of HSC development introduced in the

previous chapters forms the background to study instructive and selective lineage
specification in an idealized and well defined environment. The understanding of
the principle effects of these different modes of lineage specification on the popu-
lation but also on the single cell level are the prerequisite for the interpretation of
data that hopefully becomes available in the next decade.

7.2.1. Generation of cellular genealogies under different modes of
lineage specification

For the scope of this analysis a population of bipotent cells is considered, i.e. each
cell can differentiate in either of two possible lineages (i = 1, 2; shown in blue
and green in Figure 7.9). Subsequently, two different modes of lineage specifi-
cation are applied, both favoring (without loss of generality) the development of
the “green” lineage (i = 2). Briefly recalling the formal introduction in 4.3.4, in
the selective mode it is assume that the cell-intrinsic commitment process is bal-
anced and promotes the development of both possible lineages alike (“balanced”
rewards m1 = m2). However, there is a selective cell death process (mediated
e.g. by the abstract Pro’green’-cytokine) preferentially affecting cells that initi-
ated development towards the suppressed lineage (i = 1) whereas the preferred
lineage (i = 2) is largely unaffected (φ1 > φ2 ≈ 0). In contrast, in the instruc-
tive mode the cell-intrinsic commitment process is biased towards the preferred
lineage (“unbalanced” rewards m1 < m2), potentially mediated by the abstract
Pro’green’-cytokine. In this scenario, cell death occurs randomly in all cells (back-
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Figure 7.9.: Instructive vs selective lineage specification for bipotent cells.
In a general cell culture scenario (shown on top) the potential action of a Pro-
’green’ cytokine results in the formation of a population of “green” cells. The
mechanisms are only accessible on the single cell level: in the case of instructive
lineage specification the Pro-’green’ cytokine intrinsically propagates commitment
to only the “green” lineage while background cell death acts randomly on all cells.
In contrast, in the selective lineage specification both the “green” and “blue”
lineages are promoted equally, however selective cell death primarily targets the
“blue” cells.

ground cell death ΦB). The principle idea is outlined in the sketch in Figure 7.9.

For the particular simulations two cell populations of 500 uncommitted, bipotent
cells (initial lineage propensities x1 = x2 = 0.5) with impaired self-renewal ability
(regeneration rate r = 1.0) are initialized and undergo lineage specification in
either the instructive or selective mode. The tracking process for each of the
genealogies extends over 200 hours, thus generating 500 representative cellular
genealogies for each scenario. Further parameters are provided in Appendix D.8.

To answer the question whether a statistical analysis of the cellular genealo-
gies reveal any additional information that is not contained in the population
kinetics, the parameter configuration is chosen such that the population kinetics
(exponential expansion and fraction of lineage committed cells) are indistinguish-
able for both scenarios. Figure 7.10 illustrates a comparison of the population
characteristics.
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Figure 7.10.: Population development.
The growth kinetics (in terms of the absolute cell numbers, (A)) and the temporal
development of the lineage specification (in terms of the fraction of uncommitted
and committed cells, (B)) are shown for both cell populations (500 initial cells in
either the instructive (red) or selective (blue) mode of lineage specification). In
(B) the decline of undifferentiated blast cells and the appearance of committed
cells of generic type i = 2 are provided.

7.2.2. Analysis of structural differences in the topologies

The measures introduced in Section 6.3 are applied to address the structural dif-
ferences in the shapes of the genealogies generated by use of either the instructive
or the selective mode of lineage specification.
Both, the total number of leaves L and the characteristic path lengths Bchar

are constructed to quantify clonal expansion. As one example the histogram of
the distribution of the number of leaves L is provided for both modes of lineage
specification in Figure 7.11(A). Since the population kinetics in Figure 7.10 have
been fitted to resemble almost identical overall growth behavior of the cell cultures,
these findings are reflected on the single cell basis, too. Neither the mean value
nor the shape of the distribution show pronounced differences that could possibly
be assessed by a limited number of realizations.
As a further example the histogram for the weighted Colless’ index Cw is shown

in 7.11(B). One could speculate that the action of selective cell death as compared
to random (background) cell death introduces asymmetric genealogies in which one
branch expands more than the other. Colless’ index Cw is designed to detect such
asymmetries in tree-like structures, however there is no considerable difference to
be detected between the instructive and the selective mode of lineage specification.
Although the shapes of the distributions between both scenarios are somewhat
different, a quantification of this effect is unlikely to be measurable.
In Section 6.3 a number of measures has been introduced addressing the mu-

tual relation between characteristic events, namely the minimal distance between
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Figure 7.11.: Selected measures for cellular genealogies.
The histograms compare the cellular genealogies derived from 500 initial (root)
cells in either the instructive (red) or selective (blue) mode of lineage specification
for the following selected measures: (A) total number of leaves L (shown on a
logarithmic scale), (B) weighted Colless’ index Cw, (C)minimal distance between
cell death events R, (D) fraction of death siblings.

characteristic events R and the mutual information measure MI. In the selective
scenario cells undergo cell death in case they are developing in the unfavorable
lineage. As similar developments are more likely in closer related cells (by sharing
a common ancestry) selective cell death is more likely to appear in close relatives.
The histogram in Figure 7.11(C) for the minimal distance between cell death
events R supports this notion. Although the shape of the distributions is similar,
there is a pronounced shift in the mean values of R.

A similar observation can be made using a simplified version of the mutual
information measure MI. Figure 7.11(D) shows a histogram for the normalized
fraction of sibling pairs (two cells directly derived from on common parental cells)
in which both cells undergo cell death before they can initiate a further cell di-
vision (cp, cq ∈ Cdeath; cp, cq are siblings). In both scenarios, there is a rather
large fraction of genealogies in which cell death of both siblings does not occur at
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all. However, in the selective mode of lineage specification there is a considerable
fraction of genealogies in which this “harmonized cell death” occurs far more fre-
quently as compared to the instructive case. The numbers within the histograms
indicate the percentage of cellular genealogies in which the death of both sibling
cells occurs in less/more than 10 % of the observed sibling pairs: whereas this is an
extremely rare event under the assumption of an instructive lineage specification
(less than 1 % of the cellular genealogies) it is far more likely under the selective
mode of lineage specification (≈ 21% of the observed cellular genealogies). The
mutual information MI is less suited to detect this “heavy tail” as it is more
focused on the average values. Therefore, it is not shown for the particular case.

Briefly summarizing, it appears that in a situation in which two expanding cell
populations are indistinguishable on the population level, appropriate measures
on the single cell level can still detect significant differences. In particular the
measures focusing on the occurrence and correlation of characteristic events proved
especially useful.

7.3. Summary and additional remarks

Using the presented simulation model of HSC organization it could be shown
that cellular genealogies contain a number of additional information which is not
accessible on the population level. As for the example on instructive versus selec-
tive lineage specification it has been demonstrated that cellular genealogies reveal
“footprints” of the underlying decision process. An additional and important as-
pect making the analysis of cellular genealogies a highly rewarding technique is
the direct access to the population inherent heterogeneity. As indicated by the
model studies in Section 7.1 a high level of heterogeneity (e.g. with respect to
cellular expansion) is expected even among a population of closely similar cells. It
will be a central task of future research in cell biology to identify the mechanisms
that establish and maintain these population inherent heterogeneity and to ex-
plain their functional relevance. The recording and analysis of cellular genealogies
is one promising technology in this direction.

However, there are currently a number of technical limitations to fully exploit
the information contained in extended cellular genealogies. Cutting a long story
short, it is still a major experimental and bioinformatical challenge to gener-
ate sufficiently long time lapse videos at reasonable cell densities and to extract
enough reliable cellular genealogies from them. Although one genealogy might be
enough to document the existence of a particular common progenitor (as shown
in [225]) the statistical comparison between different sets of genealogies requires
significantly higher trial numbers. Apart from these technical limitations there is
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a further structural difficulty. Studying a particular experimentally derived set of
cellular genealogies, the application of the outlined measures does not ultimately
allow the identification of the particular mechanism (e.g. with respect to the lin-
eage specification to be either instructive or selective) since the necessary reference
scenario is generally missing. In turn, this is a strong argument in favor of the
presented theoretical approach. It has been shown that the mathematical model
can be adapted to the population kinetics for the cell culture in question using
either the instructive or the selective mode of lineage specification. The resulting
genealogies can then act as the reference scenarios to which the experimental data
is finally compared.
One could also argue that the estimation of an average cellular genealogy com-

bining the characteristic features of a large set of cellular genealogies might be
a good representation of the underlying development. However, applying such a
method all the information about population inherent heterogeneity is abandoned.
Furthermore it has been shown for the distinction between instructive and selec-
tive lineage specification that not only the mean value but especially the outliers
and the frequency of their occurrence are better predictors. This is especially
visible for the case of the fraction of death siblings (Figure 7.11(D)) in which the
frequency of genealogies with high values is distinctly increased for the selective
lineage specification.

The results presented in Sections 7.1 and 7.2 are published in [125, 232].
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8.1. Summary of results

The mathematical model presented within this thesis is the first to describe
the individual commitment process of single cells within a whole population of
hematopoietic stem cells and their progeny. It represents an essentially novel,
systems biological approach to the quantitative elucidation of lineage
specification as a temporally extended, self-organizing process. The
model has been successfully applied to reflect different experimental situations.
Furthermore it could be demonstrated using this model that the tracing of individ-
ual cells and their progeny contains additional information which is not available
based on population studies alone.
The discussion of the results within this chapter follows the outline of the the-

sis. Section 8.1.1 provides a critical assessment of the lineage specification model
and its implementation within the pre-existing model of HSC self-renewal. The
application of the model for the analysis of single cells and their clonal offspring is
discussed in Section 8.1.2. A comprehensive conclusion and outlook are provided
in Sections 8.2 and 8.3.

8.1.1. Amended model of HSC self-renewal and lineage specification

The description of lineage specification in terms of intracellular propensities rep-
resents an abstracted, phenomenological perspective on the underlying molecular
dynamics within one individual cell. In order to understand the consequences
of this intracellular regulation on the tissue level, the model of lineage specifica-
tion is consequentially integrated into a more general, single-cell based model to
describe HSC organization originally proposed by Roeder and Loeffler (see Sec-
tion 4.4). This comprehensive, amended model of HSC self-renewal and lineage
specification is the basis upon which different aspects of HSC organization are
reflected.
The presented model concept is discussed with respect to the criteria stated in

Section 4.1:

• Lineage commitment (C1) and generation of diversity (C2). The
model supports the idea of a progressive restriction in lineage potential in
the course of differentiation, i.e. starting from a population of multipotent
cells the potential to contribute to all possible lineages declines in the course
of differentiation. To make this idea more visible the lineage contribution of
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Figure 8.1.: Lineage contribution versus self-renewal ability.
The curves correspond to the fraction of cells that contribute to n out of N = 4
possible different lineages within their differentiating progeny. The curves are
shown as functions of the initial self-renewal ability of the parental cell measured
by the affinity a in the model simulations. 50,000 simulated, individual cells are
randomly taken from a homeostatic system (with their particular affinity a) and
put into an empty model system in which they undergo lineage specification. The
number of observed lineages n is counted for the progeny of each individual cell.

single differentiating cells is illustrated depending on their initial repopula-
tion ability. In terms of the model the repopulation ability is characterized
by the affinity parameter a. For the particular example of a system with
four possible lineages the actual contribution of a cell’s progeny to n out of
the N = 4 available lineages is shown as a function of the affinity parameter
a (Figure 8.1). As expected, nearly all cells with high repopulation ability
(a ≈ 1) contribute to all four lineages, while tri- and bipotent cells are found
mostly in the population with lower self-renewal ability (i.e. a ≈ amin). The
ultimate loss of repopulation potential is associated with commitment to a
single lineage.

It is essential to note that the hierarchic decrease of lineage potential is not
due to a cell-intrinsic, pre-defined developmental program, but emerges as a
system-inherent property of the proposed model. Therefore it follows that
the hierarchical appearance of the lineage specification process can be con-
sistently embedded in the context of fluctuating, self-organizing and flexible
stem cell populations.

Another important aspect is the distinction between lineage contribution
(being the lineages actually generated by the progeny of a particular cell)
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and lineage potential (being the lineages to which the same progeny could
have contributed). Since a single cell can only differentiate once, the lin-
eage potential can not be determined experimentally. However, despite this
inherent uncertainty, the notion of lineage potential is important to under-
stand the organizational principles of cell populations and tissues as well as
for the characterization of the stem cell properties. As it has been shown
exemplarily for the lineage specification kinetics of the FDCP-mix cell popu-
lation, the fluctuations in lineage potential occurring on the single cell level
average out on the population level. This means that although the out-
come on the population level is robust the particular fate of a single cell
can only be predicted in a probabilistic sense. Based on this understanding,
the proposed model predicts that heterogeneity of a progenitor population
is inherently generated as a consequence of the autonomous development of
individual cells.

• Temporal extension and reversibility (C3). The identification of a
broad range of hematopoietic cell types (through which a differentiating
HSC passes until its final maturation) suggests that hematopoietic lineage
specification is not an immediate decision but at least a stepwise process
with a certain temporal extension. The proposed model approach goes one
step further by assuming that lineage specification is an intrinsically con-
tinuous process. Describing the state of a cell in terms of its intracellular
concentrations of molecular components (the concept of “state space”, com-
pare Section 3.3.2 in which the components represent e.g. mRNAs, TF,
proteins, receptors etc.) it is rather unlikely that the concentration of any
of these components changes in a discontinuous manner. Under the neces-
sary assumption that the phenotype of a cell corresponds to its molecular
circuitry, this perspective ultimately implies a continuous approach to any
type of cellular development.

Technically, lineage specification is described by lineage propensities xi tak-
ing any value between 0 and 1. In contrast, the update procedure operates
on discrete time steps such that the underlying continuous process can only
be approximated by the numerical model. However, as long as the time steps
are sufficiently short this approximation does not alter the system dynam-
ics. This criterion is generally fulfilled for the presented model simulations.
More critically, the phenotypic mapping introduced in Section 4.3.3 imposes
a rather arbitrary classification between “uncommitted” and “committed”
cells. However, the threshold values xcom do not influence the underlying
competition process and are solely introduced for the purpose of compari-
son with experimental results. In this respect the choice of xcom reflects an
additional degree of freedom for the fitting procedure.
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The perception of lineage specification as a continuous, temporally extended
and fluctuating process integrates into the functional definition of stem cells.
The common understanding of HSC organization as a well-structured, dis-
crete hierarchy (outlined in Figure 2.2) only appears as a snapshot of an un-
derlying, continuous transition of cells from the multipotent stem cell state
towards the more differentiated cell states. In this respect, the transition
from a multipotent stem cell over a lineage restricted progenitor towards a
mature, functional cell is considered to be gradual instead of discrete.

The assumed temporal extension of losing multi-lineage potential is closely
associated with reversibility of the differentiation process. Lineage speci-
fication is modeled as a process favoring certain lineage developments by
progressively decreasing the probabilities for the competing options. There-
fore, reversibility depends strongly on both, the actual state of differenti-
ation and on the influence of the micro-environment. The model predicts
that reversibility of lineage specification is a rare event in a homeostatic
system but occurs more frequently in the disturbed situation with the need
for system repopulation. This finding is in good qualitative agreement with
experimental and clinical observations suggesting an increased flexibility of
stem cells in the situation of tissue repair. This effect, commonly referred to
as “plasticity” is mostly used if stem cells of a particular tissue contribute
to another, rather unrelated tissue in the case of high demand (e.g. bone
marrow cells contributing to regeneration of muscle [20, 21] or infarcted
myocardium [15]). However, plasticity also refers to an increased flexibil-
ity of tissue stem cells to reversibly change between different developmental
options within their particular tissue [33, 96].

In the experimental situation similar effects should be observable when cells
that are primarily cultured in a particular differentiation promoting medium
are subsequently transferred into a condition with different properties (e.g.
promoting self-renewal or another differentiation program). The model pre-
dicts that the fraction of cells with “reverted” development is not an all-
or-nothing decision, but depends in the first place on the exposure time
in the particular medium. A rigorous experimental test of this prediction
would have to use molecular markers that are irreversibly switched on if a
certain characteristic gene expression identifies a particular lineage commit-
ment. The detection of such markers can elucidate to what extend early
committed cells actually “reverse” their previous development under chang-
ing environmental conditions. The model predicts that the fraction of cells
with reversible developments gradually decreases as the process of lineage
specification continues.
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• Regulation of lineage specification (C4). The question whether par-
ticular lineage decisions are governed by instructive or selective mechanisms
is long standing (cf. Section 2.3.2). As shown in Section 4.3.4 the model
is able to reflect both these aspects. Whereas for the instructive lineage
specification the lineage specific rewards mi are adjusted, a lineage specific
cell death ΦS is assumed for the selective scenario.

It is demonstrated in Section 5.4.3 that for a particular experimental situa-
tion both scenarios of lineage specification are equally suited to describe the
observed results. Based on the analysis of the extended model system in Sec-
tion 5.2.3 it is most likely that this equivalence applies to many experimental
datasets in which lineage specification is described on the population rather
than on the single cell level. However, it has been demonstrated within this
thesis that a distinction between instructive and selective lineage specifica-
tion can possibly be made based on the analysis of single-cell developments
(also referred to as cellular genealogies). It is a remarkable feature that
in case of selective lineage specification cell death events are more likely
among closely related cells (such as siblings) as compared to the instructive
scenario. Such effects can be detected using appropriate methods for the
analysis of cellular genealogies as they are suggested in Section 7.2.

• Priming as a molecular concept of multipotency (C5). The model
concept supports the hypothesis that the experimentally observed priming
behavior (i.e. the low level coexpression of lineage specific and potentially
antagonistic transcription factors) is a common molecular representation of
the stem cell state (see also Section 2.3.2 and references [59, 43, 233]) which
is maintained under specific conditions (e.g. due to niche signals). Mainte-
nance of the priming state could feasibly be achieved by active epigenetic
stabilization of chromatin structures retaining parallel developmental op-
tions. Changing micro-environmental signals might be one possible mech-
anism to destabilize the priming state. Under these modified conditions,
chromatin changes at key loci may result in a sequential shift of the expres-
sion state towards one or the other lineage specific expression pattern. At
an experimentally accessible level, the model predicts that targeted up- or
down-regulation of certain lineage specific genes upsets the balance at the
priming level and consequentially supports or discriminates certain options
in the subsequent differentiation process. The model furthermore suggests
that such processes are best studied on the level of single cells. Alongside
with the experimental tracing of individual cells in culture it is shown in
Chapters 6 and 7 that the model is able to mimic critical phenomena of the
differentiation sequence on the single cell level and to couple them to the
population level.
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Placement of the model. The presented model is in line with similar con-
cepts perceiving lineage specification as a progressive restriction in lineage poten-
tial [26, 218]. Although the decision process is intrinsically random it is tunable
by amending the lineage specific rewards mi. The model was intentionally con-
structed from a phenomenological perspective with a focus on the maintenance
and loss of multipotency and the temporal extension of the commitment process.
This approach is structurally different from the functional perspective (cf. Section
3.3.4) describing the interaction and sequential down-regulation of certain lin-
eage specific transcription factors during differentiation as proposed for different
small-scale networks [92, 108, 234].

To my knowledge the presented model is the first approach to integrate a de-
scription of intracellular lineage specification dynamics within a functional model
of HSC organization. In this respect the model couples intracellular decision pro-
cesses to the phenotypic appearance of the overall tissue system. It is this multi-
scale description that allows to study different mechanisms of lineage specification
(such as instructive versus selective) on the intracellular level and interrogates
the consequences on the tissue level. Based on this philosophy of self-organizing,
heterogeneous and mutually interacting cells, similar integrative models have been
recently developed for mesenchymal stem cells [235] and for stem cells of the in-
testinal crypt (Galle, Loeffler et al., in preparation).

The concept of “asymmetric cell division” has been used regularly to describe
the balance between self-maintenance of a stem cell population and the differenti-
ation into tissue cells (compare Section 3.2.1). Although asymmetric cell division
have been reported for a number of stem cells systems [185, 186] it is not yet clear
whether such events do also occur in the hematopoietic system and whether they
are functional with respect to the asymmetry occurring in the development of the
daughter cells and their progeny. Therefore, the concept of functionally asym-
metric divisions in hematopoietic stem and progenitor cells is still an unproven
hypothesis. These doubts are strengthened by the presented model demonstrating
that a consistent explanation of the heterogeneity among differentiated cells on
the tissue level is possible without assuming an asymmetric division process on the
intracellular level. Within the proposed model any simulated cell division is sym-
metric by definition. Differences in the individual development of the daughter
cells occur only due to their independent differentiation sequences after mitosis.
Asymmetric development is thus interpreted as the asymmetry of cellular fates,
not of the division process itself [183]. More technically speaking, asymmetric fate
is solely the result of the independent development of the two daughter cells after
a functional symmetric division event.

Limitations of the modeling approach. The particular underlying math-
ematical process of the lineage specification dynamic was chosen because it re-
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sembles the criteria outlined in Section 4.1. However, the process is based on a
number of simplifying assumptions limiting the transferability to a directly mea-
surable molecular process. For instance, lineage specification dynamics presum-
ably require a set of many coregulated factors which have been summarized into
one generic lineage propensity. This simplification neglects subsequent activation
steps, mutual interactions between the members of each of the sets of coregulated
factors, and the role of late signaling events. Similarly, the role of extrinsic sig-
naling by cell-cell and cell-environment interactions is reduced to the influence of
two antagonistic control regimes governing the lineage specification process. Fur-
thermore, the phenotypic mapping to classify cells as either uncommitted or com-
mitted (introduced in Section 4.3.3) is only a rough approximation of the highly
complex maturation process. Despite, or perhaps because of this simplicity, the
model proves sufficient to account for a considerable number of phenomena on the
lineage specification of hematopoietic stem cells. Most notably, all these results
are consistent with previous findings on self-renewal and clonal competition (see
also the summary in Table 8.1).

This is not to say that the provided explanation is either unique or complete.
Indeed, a detailed quantitative understanding of lineage specification must eventu-
ally take account of the characteristics and interactions of a plethora of regulatory
molecules to cover the full complexity of intracellular regulations. However, as
outlined in Section 3.3.4 such an approach requires a better and more detailed un-
derstanding of the involved molecular components and their mutual interactions.

The interpretation of the data analysis presented in Section 5.4 requires a critical
acclaim. For the simulation of the experiments by Suda et al. [26, 27] and Takano
et al. [222] the particular cell sources are defined as a certain subpopulations of the
pool of simulated cells, referred to as “root pools”. These are adjusted to represent
the balance between multipotent cells and committed cells (compare also Figure
8.1 in which the decline of multipotency as a function of the attachment affinity
a is illustrated). However, any developmental preferences for certain lineages or
correlations between them are neglected and there is no adaptation of turnover
rates which might actually depend on the lineage commitment.

The choice of parameters for the simulations of the lineage specification in
differentiating FDCP-mix cell cultures in Section 5.4.3 has been adapted to meet
the time scales of lineage commitment as well as the fraction of cells within the
individual lineages. The good correspondence with the experimental results is
taken to support the idea that lineage specification is tunable on a probabilistic
level in which the fate of a single cell can be influenced although a prediction about
the future development cannot be made with certainty. However, this uncertainty
disappears on the population level as the individual realizations contribute to a
dynamically stable “average tissue”.
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8.1.2. Tracing the ancestry of single cells

The application of the extended stem cell model to different experimental settings
in Chapter 5 suggests that the analysis of single cell fates is more instructive as
population averages alone. This thesis provides an essentially novel and inno-
vative approach to analyze and compare such pedigrees of cellular development
originating from one particular cell. Based on the tracing of cellular ancestry
using time-lapse video monitoring and appropriate tracking software the classi-
cal population based approach is abandoned and it becomes possible to perceive
the development of each entity separately and to place it within the population
context. The resulting cellular genealogies are a rich source of information: on an-
cestry, division times, morphological changes, motility, cell-cell interactions, and
correlations among related cells, just to name a few. However, the extraction of
these quantities and their analysis for comparability requires a theoretical foun-
dation.
In this thesis a characterization of the topological features of cellular genealo-

gies is provided alongside with a number of measures particularly addressing the
quantitative analysis of individual cell fates including the balance between stem
cell proliferation, quiescence, and cell death. Due to limitations in the availability
of experimental data, these measures are discussed in the context of the amended
model of HSC organization although they are applicable to cellular genealogies
derived from different sources.
The introduction and analysis of cellular genealogies in Chapters 6 and 7 re-

vealed a number of prominent aspects:

• Heterogeneity and the detection of rare events. The measures for the
quantification of cellular genealogies that are proposed in Section 6.3 are
primarily suited to distinguish between cellular genealogies derived under
different growth scenarios. Additionally, these measures can be applied for
the estimation of the inherent variation within a set of genealogies derived
under identical conditions. The width of the distributions for the different
measures shown in Figures 7.2 to 7.7 illustrates that even the genealogies
which are derived under identical conditions show a large variability. In
this respect, cellular genealogies and their topological characterizations are
powerful tools to quantify clonal heterogeneity, and to distinguish whether
stem cell populations are inherently heterogeneous or if they are composed
of predefined homogeneous subsets.

The analysis in Section 7.2 on how instructive and selective lineage specifica-
tion influence the topology of the resulting cellular genealogy hints towards
another interesting aspect of the single cell analysis. As indicated in Figure
7.11 the occurrence of pairs of death cells among siblings shows a different
type of distribution in case of the selective lineage specification as compared
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to the instructive lineage specification. In particular, there is an increased
frequency of the cellular genealogies with higher rates of death siblings for
the selective lineage specification. Although such events are rare they lead
to the establishment of a so called “heavy tail distribution” which is not
observable for the instructive lineage specification. In other words, the dis-
tinction between the different modes of lineages specification does not rely
on comparison of mean values but is based on the frequency of rare events.
This behavior, which is illustrated for one particular example, is one of the
reasons why the author avoids the notion of an “average genealogy”. It is
most likely that the averaging process over many heterogenous genealogies
takes away a lot of the relevant information obtained on the single cell level.
In this respect, the level of population inherent heterogeneity appears as
an equally important classifier of cellular development as compared to the
commonly used average values.

• Occurrence of characteristic events. The structure of cellular genealo-
gies allows the precise location of different types of characteristic events
(e.g. morphological changes, cell death, expression of fluorescence marked
reporter genes) within the divisional history of the cell and its “clonal rela-
tives”. The hypothesis of whether such characteristic events are related to
a cell intrinsic program which advances similarly in closely related cells or
whether these events result from external queues can be tested by investi-
gating the mutual relation between the characteristic events. The analysis
of Chapter 7 indicates that different measures addressing this relatedness
of characteristic events (i.e. whether they occur in closely related cells or
only in further distant relatives) are suitable and specific for the quantitative
analysis and comparison of cellular genealogies.

For the illustrated example of cell death occurrence, the functional role of
this process for the regulation of lineage composition both in vivo and in vitro
is still controversial [92, 94, 124]). However, if it becomes possible to clearly
identify cell death events e.g. by monitoring the activity of certain relevant
genes in the apoptosis pathway using fluorescence labeling methods, cellular
genealogies are a unique tool to investigate this action in the divisional
and in the population context. The proposed measures (i.e. the mutual
information MI and the average minimal topological distance between such
events R) are possible tools to quantify these aspects.

• Analysis of cell cycle times. Apart from the elaborated analysis intro-
duced in Chapters 6 and 7, the availability of cellular genealogies will also
allow for an exact characterization of individual cell cycle times τc. Whereas
classical estimates of cell cycle times are based on measurements of the fold
increase in a population of differentiating cells, which neither account for
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the heterogeneity of individual cells nor for the occurrence of cell death, the
distribution of cell cycle times can be reliably estimated from a sufficiently
large set of cellular genealogies. Starting from a paternal division di the time
interval to the next division dj is an exact measure of the cell cycle time τc.
Besides the global distribution of cell cycle times, the representation of clonal
development in a cellular genealogy allows the evaluation of cell cycle times
with respect to secondary parameters e.g. according to the particular cell
generation g or to cell fate specific information that accompany a particular
genealogy. In the latter case, correlations between the lineage fate and the
change in cell turnover can be quantified circumventing the obstacles of a
population average potentially containing different cell types.

Placement of the model approach. The topological characterization and
the proposed measures for the analysis of cellular genealogies represent a novel
systems-biological methodology for the analysis of single cell developments. Al-
though pedigrees of cellular development have been derived in different experi-
mental situations [124, 126, 130, 225] a statistical analysis of the resulting cellular
genealogies, as the one presented within this thesis, is still missing. However, it
needs to be remarked that the available data sets are currently not sufficient to
apply this methodology with scientific benefit.
The derivation of the cellular genealogies in Chapters 6 and 7 builds upon the

comprehensive model of HSC organization introduced in the preceding chapters. It
is one central advantage of a mathematical model to allow testing a large variety
of possible measures on whether they are suited to identify differences in the
generation scenarios. Based on such a strategy a number of such measures could
be disqualified which performed poorly in the comparison and characterization of
cellular genealogies. Moreover, an in silico model can be tuned such to pronounce
certain developmental aspects like differentiation at the cost of self-renewal or a
bias towards particular lineage fates. Using the predicted model genealogies as
a reference system and comparing them with their “real” counterparts (as soon
as they become available) is a powerful systems-biological tool to uncover the
imprints of different developmental and/or regulatory processes that are hidden
in the complex topological structure of this particular type of data.

Limitations of the particular simulation model. The application of a math-
ematical model represents a unique tool to study the explanatory and the statisti-
cal power but also the limitations of certain analysis methods prior to the gener-
ation of large amounts of data. However, using a mathematical model instead of
biological data bears a number of risks and uncertainties especially for the general-
ization of the results. Some aspects, that are inherently present in experimentally
derived data, can not be studied on the basis of the particular simulation model.
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For example, variations of the cell cycle times τc are not adequately represented
by the model. However, the measures proposed in the Chapter 6 are only based
on the topological structure (i.e. the parent-daughter relation) and do not require
the estimates of the cell cycle times. Therefore, the drawn conclusions also apply
to the more general and experimental relevant situation in which cell divisions are
not synchronized.
Furthermore, the simulated genealogies do not account for the migration of cells

since the employed stem cell model is not based on an underlying spatial structure.
Therefore neither spatial correlations between the existing cells nor their velocities
are accessible, and the analysis of their influence on cell fate decisions can not be
studied using the current model implementation. The structural characterization
of cellular genealogies, as it is presented above, can be easily extended to incor-
porate the spatial component. A corresponding project is currently under way.
Finally, the list of proposed measures is neither complete nor exclusive. Different
biological questions might result in the development of novel measures that are
particularly designed to reveal certain structures within the genealogies.

8.2. Conclusions

Summarizing the above discussion, there are a number of major conclusions from
the presented study. First, is has been shown that the process of lineage spec-
ification can be integrated into the previously proposed hematopoietic stem cell
model [33, 46] in a conceptually consistent way. The essential idea is a fluctuating,
albeit balanced ground state of competing lineage propensities which might be re-
tained or suspended depending on the exposition to appropriate environmental
conditions. Furthermore, it has been demonstrated that this combined model of
stem cell organization and lineage specification accounts for the phenotypic hetero-
geneity that is experimentally observed in populations of differentiating stem and
progenitor cells and is consistent with the assumption of a progressive restriction
in lineage potential. As outlined above, stem cell development and lineage spec-
ification are considered as temporally extended and fluctuating processes of con-
tinuously changing cellular characteristics. This concept does not exclude certain
preferred trends in the differentiation sequence, but it comprises the possibility of
reversible developments for individual cells and, thus, allows the system to flexibly
react to changing demands. In this sense ”stemness” is no longer understood as a
cellular feature, but as a system property. This perspective has first been proposed
by our group [1, 33] and independently by others [34, 60, 175, 174, 113, 176]. The
concept is fundamentally different from approaches describing stem cell organi-
zation as the consequence of a predefined, cell-intrinsic differentiation program.
Such approaches assume discontinuous transitions from one confined stem cell or
progenitor subpopulation to another in a predefined, strictly unidirectional differ-
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Figure 8.2.: Overview of the extended stem cell model.
The single cell-based model (top) allows to study hematopoietic stem cell devel-
opment both on the population level (left) and on the intracellular level (right).
Aspects of both these levels can be projected conveniently into representations of
cellular genealogies (bottom).

entiation sequence [86, 170, 236, 237]. Clearly, the grouping of stem and progenitor
cells according to features such as cell surface marker expression and functional
characteristics remains useful for classification, selection and enrichment, since
it accurately reflects the behavior of a population under a certain set of condi-
tions. Ultimately, however, our increasing awareness of heterogeneity, flexibility,
and plasticity within stem and progenitor cell populations questions the validity
of these strictly unidirectional concepts at the mechanistic level in single cells.

Second, it has been illustrated that cellular genealogies, derived from the track-
ing of individual cells over time, are a rich source of information on cellular devel-
opment that goes far beyond classical population based approaches. Most notably,
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it has been demonstrated that, by the introduction of a mathematical characteri-
zation, this very complex data type is accessible to statistical evaluation and com-
parison. It can be expected that the availability of time lapse video microscopy
and the establishment of efficient image-processing methods will soon allow the
“high throughput” tracing of single cells within cell cultures. The interpretation
and management of the resulting cellular genealogies is a challenge to experimental
and theoretical biologists alike. Therefore, it can be argued that the development
of efficient automized tracking routines on one side but also the establishment of
a powerful analysis pipeline on the other side are both integral parts of a joint
venture that need to be pursued in parallel.
Taken together, the integration of the intracellular model of lineage specification

into the previously described model of self-organizing HSC populations [46, 33]
establishes a powerful conceptual and numerical tool to address a broad range
of experimentally observed phenomena in hematopoiesis. The flow diagram in
Figure 8.2 summarizes the different descriptional levels of the model. Starting
from the extended, single cell-based model the dynamical behavior is accessible
on the population level and on the intracellular level. Cellular genealogies appear
as a unified picture accounting for aspects of both these levels.
On the descriptional level the model is consistent with previous findings on

stem cell self-renewal and clonal competition. However, the extended approach
additionally accounts for the experimentally observed phenotypic heterogeneity
in populations of differentiating stem and progenitor cells assayed under various
conditions. The overview in Table 8.1 summarizes the coverage of the amended
HSC model.

HSC model by Roeder
and Loeffler

amended HSC model in-
cluding lineage specifi-
cation

stem cell self-renewal
and differentiation

+, covered in [33, 183] +

clonal competition
and leukemia

+, covered in [221, 220] +

clonal heterogeneity +, covered in [122] +
lineage specification +, covered in [114]
single cell tracking +, covered in [125, 232]

Table 8.1.: Coverage of the extended HSC model
The table provides an overview of different phenomena in hematopoiesis and their
coverage in the original HSC model by Roeder and Loeffler compared to the
amended HSC model including lineage specification. Corresponding publications
are cited.
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8.3. Outlook

The presented thesis is a good example to illustrate two important aspects of the-
oretical stem cell biology: Whereas the first part concentrates on a mathematical
framework to describe the phenomenology of lineage specification in hematopoietic
stem cells (modeling), the second part develops a methodology to analyze a partic-
ular data type, termed cellular genealogy, describing the developmental history of
individual cells (data analysis). Beyond the scientific results this work illustrates
how experimental results and techniques have a continuation in theoretical biol-
ogy and how this data analysis and conceptualization feeds back into experimental
approaches. It is this combination of mutual stimulus that will make the idea of
a Systems Biology of Stem Cells a vivid and productive field of research.
On the practical side, the model approaches of this thesis have different impli-

cations for experimental studies:

• The perception of lineage specification as a temporally extended process
strongly suggests that cellular development needs to be studied in a time de-
pendent manner. This implies repeated functional, phenotypical and molec-
ular measurements at different time points of a developmental sequence.
Based on the available population data the model can help to estimate ap-
propriate time scales for such measurements.

• The model advocates the view that lineage specification is a continuous
process and the hierarchic appearance of hematopoietic differentiation oc-
curs as a consequence of the underlying, self-organizing mechanisms. In
this case, it might be insufficient to map the differentiation process onto
strictly defined, discrete subpopulations (like short-term repopulating HSCs
or common myeloid progenitors that are defined based on a certain expres-
sion of surface markers) as the discretization might ignore transient states.
However, these transient states might be important intermediates for the
understanding of the temporally extended differentiation process.

• The model suggest that reversible developments are rare but at the same
time demonstrates that they are an inevitable consequence of the temporally
extended and stochastic decision process. Such reversible developments can
be typically addressed in experiments with changing culture conditions.

• The model demonstrates that the robust population behavior can be well
achieved on the basis of a random and heterogeneous developments on the
cellular level. The model indicates that single cell analysis (including a cells
progeny over a number of generations) is the most powerful tool to address
this population inherent heterogeneity.
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• Furthermore the model suggests that the analysis of single cell developments
can be used to address functional mechanisms of lineage specification which
are not accessible on the population level (e.g. whether certain decision steps
are governed by instructive versus selective mechanisms). In particular, cell
death events are important indicators that should not be neglected. The
model can also serve as an appropriate reference system.

On the theoretical side, the research on proposed model framework for hematopoi-
etic stem cell organization needs to be continued at different points:

• There are several experimental reports demonstrating that individual HSCs
show different and inheritable contributions to lymphoid and myeloid cells
types [44, 45] (see also Section 2.3.4). As outlined in Section 5.3 the model
of lineage specification is in principle able to reflect aspects of inheritable
lineage bias that needs to be adapted to the available data. It is an interest-
ing topic to further analyze how lineage bias and differential repopulation
ability of HSCs are functionally coupled to each other.

• The simplified lineage propensities used throughout this thesis might be
replaced by small scale interaction networks that appropriately reflect the
molecular interaction of key players being involved in cellular decision mak-
ing.

• The amended stem cell model does not account for any feedback signal from
later stages of hematopoietic development (e.g. stimulation of stem cells by
cytokines like Erythropoietin or G-CSF). However, for the establishment of
a comprehensive blood model both the stem cell compartment as well as the
maturing blood and the connections between these different developmental
stages need to be represented appropriately.

• A more sophisticated analysis of experimentally derived cellular genealogies
should also account for the spatial position and the shape of the tracked cell
objects. These features need to be complemented on the modeling side as
well.

These extensions of the model and its further applications will help to evaluate
the validity of the presented approaches. Advancements as the ones proposed
above will further contribute to a better conceptual understanding of tissue stem
cell formation on different organizational layers and their mutual interdependence.
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H. Glimm, K. Kühlcke, A. Schilz, H. Kunkel, et al., Correction of x-linked
chronic granulomatous disease by gene therapy, augmented by insertional
activation of mds1-evi1, prdm16 or setbp1., Nat Med 12, 401 (2006).

[14] S. Hacein-Bey-Abina, C. V. Kalle, M. Schmidt, M. P. McCormack, N. Wulf-
fraat, P. Leboulch, A. Lim, C. S. Osborne, R. Pawliuk, E. Morillon, et al.,
Lmo2-associated clonal t cell proliferation in two patients after gene therapy
for scid-x1., Science 302, 415 (2003).

[15] D. Orlic, J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li,
J. Pickel, R. Mckay, B. Nadal-ginard, D. M. Bodine, et al., Bone marrow
cells regenerate infarcted myocardium., Nature 410, 701 (2001).

[16] K. R. Chien, Stem cells: lost in translation., Nature 428, 607 (2004).

[17] N. D. Theise, S. Badve, R. Saxena, O. Henegariu, S. Sell, J. M. Crawford,
and D. S. Krause, Derivation of hepatocytes from bone marrow cells in mice
after radiation-induced myeloablation., Hepatology 31, 235 (2000).

[18] T. R. Brazelton, F. M. Rossi, G. I. Keshet, and H. M. Blau, From marrow
to brain: expression of neuronal phenotypes in adult mice, Science 290, 1775
(2000).

[19] E. Mezey, K. J. Chandross, G. Harta, R. A. Maki, and S. R. McKercher,
Turning blood into brain: cells bearing neuronal antigens generated in vivo
from bone marrow., Science 290, 1779 (2000).

[20] G. Ferrari, G. C.-D. Angelis, M. Coletta, E. Paolucci, A. Stornaiuolo,
G. Cossu, and F. Mavilio, Muscle regeneration by bone marrow-derived myo-
genic progenitors., Science 279, 1528 (1998).

[21] M. Dezawa, H. Ishikawa, Y. Itokazu, T. Yoshihara, M. Hoshino, S. Takeda,
C. Ide, and Y. Nabeshima, Bone marrow stromal cells generate muscle cells
and repair muscle degeneration., Science 309, 314 (2005).

[22] T. Sato, J. H. Laver, and M. Ogawa, Reversible expression of cd34 by murine
hematopoietic stem cells, Blood 94, 2548 (1999).

164



Bibliography

[23] S. Matsuoka, Y. Ebihara, M. Xu, T. Ishii, D. Sugiyama, H. Yoshino,
T. Ueda, A. Manabe, R. Tanaka, Y. Ikeda, et al., Cd34 expression on long-
term repopulating hematopoietic stem cells changes during developmental
stages., Blood 97, 419 (2001).

[24] I. Kim, S. He, O. H. Yilmaz, M. J. Kiel, and S. J. Morrison, Enhanced pu-
rification of fetal liver hematopoietic stem cells using slam family receptors.,
Blood 108, 737 (2006).

[25] C. Eckfeldt, E. Mendenhall, and C. Verfaillie, The molecular repertoire of
the ’almighty’ stem cell., Nat Rev Mol Cell Biol 6, 726 (2005).

[26] T. Suda, J. Suda, and M. Ogawa, Single-cell origin of mouse hemopoietic
colonies expressing multiple lineages in variable combinations., Proc Natl
Acad Sci U S A 80, 6689 (1983).

[27] T. Suda, J. Suda, and M. Ogawa, Disparate differentiation in mouse
hemopoietic colonies derived from paired progenitors., Proc Natl Acad Sci U
S A 81, 2520 (1984).

[28] A. G. Leary, L. C. Strauss, C. I. Civin, and M. Ogawa, Disparate differenti-
ation in hemopoietic colonies derived from human paired progenitors., Blood
66, 327 (1985).

[29] M. A. Cross and T. Enver, The lineage commitment of haemopoietic pro-
genitor cells., Curr Opin Genet Dev 7, 609 (1997).

[30] M. Hu, D. Krause, M. Greaves, S. Sharkis, M. Dexter, C. Heyworth, and
T. Enver, Multilineage gene expression precedes commitment in the hemopoi-
etic system., Genes Dev 11, 774 (1997).

[31] T. Enver and M. Greaves, Loops, lineage, and leukemia., Cell 4, 9 (1998).

[32] K. Akashi, X. He, J. Chen, H. Iwasaki, C. Niu, B. Steenhard, J. Zhang,
J. Haug, and L. Li, Transcriptional accessibility for genes of multiple tis-
sues and hematopoietic lineages is hierarchically controlled during early
hematopoiesis., Blood 101, 383 (2003).

[33] I. Roeder and M. Loeffler, A novel dynamic model of hematopoietic stem cell
organization based on the concept of within-tissue plasticity, Exp. Hematol.
30, 853 (2002).

[34] M. A. Kirkland, A phase space model of hemopoiesis and the concept of stem
cell renewal., Exp Hematol 32, 511 (2004).

165



Bibliography

[35] J. Suda, T. Suda, and M. Ogawa, Analysis of differentiation of mouse
hemopoietic stem cells in culture by sequential replating of paired progen-
itors., Blood 64, 393 (1984).

[36] R. K. Humphries, A. C. Eaves, and C. J. Eaves, Self-renewal of hemopoietic
stem cells during mixed colony formation in vitro., Proc Natl Acad Sci U S
A 78, 3629 (1981).

[37] M. Ward, J. Milledge, and J. West, High Altitude Medicine and Physiology
(Oxford University Press, London, 2000).

[38] D. Douer and H. P. Koeffler, Retinoic acid enhances growth of human early
erythroid progenitor cells in vitro., J Clin Invest 69, 1039 (1982).

[39] C. M. Heyworth, T. M. Dexter, O. Kan, and A. D. Whetton, The role
of hemopoietic growth factors in self-renewal and differentiation of il-3-
dependent multipotential stem cells., Growth Factors 2, 197 (1990).

[40] L. Bruno, R. Hoffmann, F. McBlane, J. Brown, R. Gupta, C. Joshi, S. Pear-
son, T. Seidl, C. Heyworth, and T. Enver, Molecular signatures of self-
renewal, differentiation, and lineage choice in multipotential hemopoietic
progenitor cells in vitro., Mol Cell Biol 24, 741 (2004).

[41] A. G. Rolink, S. L. Nutt, F. Melchers, and M. Busslinger, Long-term in
vivo reconstitution of t-cell development by pax5-deficient b-cell progenitors.,
Nature 401, 603 (1999).

[42] C. Heyworth, S. Pearson, G. May, and T. Enver, Transcription factor-
mediated lineage switching reveals plasticity in primary committed progenitor
cells., EMBO. J. 21, 3770 (2002).

[43] K. Akashi, Lineage promiscuity and plasticity in hematopoietic develop-
ment., Ann N Y Acad Sci 1044, 125 (2005).

[44] C. Muller-Sieburg, R. Cho, L. Karlsson, J. Huang, and H. Sieburg, Myeloid-
biased hematopoietic stem cells have extensive self-renewal capacity but gen-
erate diminished lymphoid progeny with impaired IL-7 responsiveness., Blood
103, 4111 (2004).

[45] B. Dykstra, D. Kent, M. Bowie, L. McCaffrey, M. Hamilton, K. Lyons,
S.-J. Lee, R. Brinkman, and C. Eaves, Long-term propagation of distinct
hematopoietic differentiation programs in vivo., Cell Stem Cell 1, 218 (2007).

[46] M. Loeffler and I. Roeder, Tissue stem cells: Definition, plasticity, hetero-
geneity, self-organization and models - a conceptual approach, Cells Tissues
Organs 171, 8 (2002).

166



Bibliography

[47] I. Roeder, Dynamical modeling of hematopoietic stem cell organization,
Ph.D. thesis, University of Leipzig, Germany (2003).

[48] J. E. Till and E. A. McCulloch, A direct measurement of radiation sensitivity
of normal mouse bone marrow cells, Radiat. Res. 14, 213 (1961).

[49] A. J. Becker, E. A. McCulloch, and J. E. Till, Cytological demonstration of
the clonal nature of spleen colonies derived from transplanted mouse marrow
cells., Nature 197, 452 (1963).

[50] L. Siminovitch, E. A. McCulloch, and J. E. TILL, The distribution of colony-
forming cells among spleen colonies., J Cell Physiol 62, 327 (1963).

[51] M. Ramalho-Santos and H. Willenbring, On the origin of the term ”stem
cell”., Cell Stem Cell 1, 35 (2007).

[52] L. Alonso and E. Fuchs, Stem cells of the skin epithelium., Proc Natl Acad
Sci U S A 100 Suppl 1, 11830 (2003).

[53] C. S. Potten and R. J. Morris, Epithelial stem cells in vivo., J Cell Sci Suppl
10, 45 (1988).

[54] N. D. Theise, Liver stem cells: prospects for treatment of inherited and
acquired liver diseases., Expert Opin Biol Ther 3, 403 (2003).

[55] S. Temple, The development of neural stem cells., Nature 414, 112 (2001).

[56] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J.
Swiergiel, V. S. Marshall, and J. M. Jones, Embryonic stem cell lines derived
from human blastocysts., Science 282, 1145 (1998).

[57] N. B. Ivanova, J. T. Dimos, C. Schaniel, J. A. Hackney, K. A. Moore, and
I. R. Lemischka, A stem cell molecular signature., Science 298, 601 (2002).

[58] M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A.
Melton, “stemness”: transcriptional profiling of embryonic and adult stem
cells., Science 298, 597 (2002).

[59] H. Mikkers and J. Frisén, Deconstructing stemness., EMBO J 24, 2715
(2005).

[60] H. M. Blau, T. R. Brazelton, and J. M. Weimann, The evolving concept of
a stem cell: entity or function?, Cell 105, 829 (2001).

[61] D. Zipori, The nature of stem cells: state rather than entity., Nat Rev Genet
5, 873 (2004).

167



Bibliography

[62] M. Loeffler and C. S. Potten, Stem cells and cellular pedigrees - a conceptual
introduction (Academic Press, Cambridge, 1997), pp. 1–27.

[63] H. K. A. Mikkola and S. H. Orkin, The journey of developing hematopoietic
stem cells., Development 133, 3733 (2006).

[64] S. H. Orkin, Diversification of haematopoietic stem cells to specific lineages.,
Nat Rev Genet 1, 57 (2000).

[65] S. H. Cheshier, S. J. Morrison, X. Liao, and I. L. Weissman, In vivo prolif-
eration and cell cycle kinetics of long-term self-renewing hematopoietic stem
cells., Proc. Natl. Acad. Sci. U. S. A. 96, 3120 (1999).

[66] A. Wilson, E. Laurenti, G. Oser, R. C. van der Wath, W. Blanco-Bose,
M. Jaworski, S. Offner, C. F. Dunant, L. Eshkind, E. Bockamp, et al.,
Hematopoietic stem cells reversibly switch from dormancy to self-renewal
during homeostasis and repair., Cell 135, 1118 (2008).

[67] I. Glauche, K. Moore, L. Thielecke, K. Horn, M. Loeffler, and I. Roeder,
Stem cell proliferation and quiescence–two sides of the same coin., PLoS
Comput Biol 5, e1000447 (2009).

[68] J. L. Abkowitz, S. N. Catlin, M. T. McCallie, and P. Guttorp, Evidence that
the number of hematopoietic stem cells per animal is conserved in mammals.,
Blood 100, 2665 (2002).

[69] G. de Haan, S. J. Szilvassy, T. E. Meyerrose, B. Dontje, B. Grimes, and
G. Van Zant, Distinct functional properties of highly purified hematopoietic
stem cells from mouse strains differing in stem cell numbers., Blood 96,
1374 (2000).

[70] D. C. Weksberg, S. M. Chambers, N. C. Boles, and M. A. Goodell, Cd150-
side population cells represent a functionally distinct population of long-term
hematopoietic stem cells., Blood 111, 2444 (2008).

[71] C. L. Celso, H. E. Fleming, J. W. Wu, C. X. Zhao, S. Miake-Lye, J. Fujisaki,
D. Cote, D. W. Rowe, C. P. Lin, and D. T. Scadden, Live-animal tracking of
individual haematopoietic stem/progenitor cells in their niche., Nature 457,
92 (2009).

[72] J. Trentin, Influence of hematopoietic organ stroma (hematopoieticinductive
microenvironment) on stem cell differentiation. (Appleton-Century-Crofts,
New York, 1970), pp. 161–168.

168



Bibliography

[73] J. J. Trentin, Determination of bone marrow stem cell differentiation by
stromal hemopoietic inductive microenvironments (HIM)., Am. J. Pathol.
65, 621 (1971).

[74] R. Schofield, The relationship between the spleen colony-forming cell and the
haemopoietic stem cell., Blood Cells 4, 7 (1978).

[75] D. L. Jones and A. J. Wagers, No place like home: anatomy and function
of the stem cell niche., Nat Rev Mol Cell Biol 9, 11 (2008).

[76] M. Cross, R. Alt, and D. Niederwieser, The case for a metabolic stem cell
niche., Cells Tissues Organs 188, 150 (2008).

[77] K. A. Moore and I. R. Lemischka, Stem cells and their niches., Science 311,
1880 (2006).

[78] F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito,
G. Y. Koh, and T. Suda, Tie2/angiopoietin-1 signaling regulates hematopoi-
etic stem cell quiescence in the bone marrow niche., Cell 118, 149 (2004).

[79] A. Czechowicz, D. Kraft, I. L. Weissman, and D. Bhattacharya, Effi-
cient transplantation via antibody-based clearance of hematopoietic stem cell
niches., Science 318, 1296 (2007).

[80] J. L. Christensen, D. E. Wright, A. J. Wagers, and I. L. Weissman, Circu-
lation and chemotaxis of fetal hematopoietic stem cells., PLoS Biol 2, E75
(2004).

[81] H. Taniguchi, T. Toyoshima, K. Fukao, and H. Nakauchi, Presence of
hematopoietic stem cells in the adult liver., Nat Med 2, 198 (1996).

[82] M. J. Kiel, O. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst, and
S. J. Morrison, Slam family receptors distinguish hematopoietic stem and
progenitor cells and reveal endothelial niches for stem cells., Cell 121, 1109
(2005).

[83] T. Yin and L. Li, The stem cell niches in bone., J Clin Invest 116, 1195
(2006).

[84] M. Osawa, K. Hanada, H. Hamada, and H. Nakauchi, Long-term lymphohe-
matopoietic reconstitution by a single cd34- low/negative hematopoietic stem
cell., Science 273, 242 (1996).

[85] S. J. Morrison and I. L. Weissman, The long-term repopulating subset of
hematopoietic stem cells is deterministic and isolatable by phenotype, Im-
munity 1, 661 (1994).

169



Bibliography

[86] I. L. Weissman, Stem cells: units of development, units of regeneration, and
units in evolution., Cell 100, 157 (2000).

[87] A. J. Wagers, J. L. Christensen, and I. L. Weissman, Cell fate determination
from stem cells., Gene Ther 9, 606 (2002).

[88] D. Metcalf, Concise review: hematopoietic stem cells and tissue stem cells:
current concepts and unanswered questions., Stem Cells 25, 2390 (2007).

[89] H. E. Broxmeyer and D. E. Williams, The production of myeloid blood cells
and their regulation during health and disease., Crit Rev Oncol Hematol 8,
173 (1988).

[90] H. E. Broxmeyer and C. H. Kim, Regulation of hematopoiesis in a sea of
chemokine family members with a plethora of redundant activities., Exp
Hematol 27, 1113 (1999).

[91] M. Haggstrom, picture published under GNU Free Documentation License
at http://en.wikipedia.org/wiki/File:Hematopoiesis simple.png.

[92] S. Huang, Y.-P. Guo, G. May, and T. Enver, Bifurcation dynamics in
lineage-commitment in bipotent progenitor cells., Dev Biol 305, 695 (2007).

[93] C. Joshi and T. Enver, Molecular complexities of stem cells., Curr. Opin.
Hematol. 10, 220 (2003).

[94] S. J. Morrison, N. M. Shah, and D. J. Anderson, Regulatory mechanisms in
stem cell biology., Cell 88, 287 (1997).

[95] T. Enver, C. M. Heyworth, and T. M. Dexter, Do stem cells play dice?,
Blood 92, 348 (1998).

[96] T. Graf, Differentiation plasticity of hematopoietic cells., Blood 99, 3089
(2002).

[97] C. M. Heyworth, M. Alauldin, M. A. Cross, L. J. Fairbairn, T. M. Dexter,
and A. D. Whetton, Erythroid development of the FDCP-Mix A4 multipo-
tent cell line is governed by the relative concentrations of erythropoietin and
interleukin 3., Br J Haematol 91, 15 (1995).

[98] N. Ivanova, R. Dobrin, R. Lu, I. Kotenko, J. Levorse, C. DeCoste, X. Schafer,
Y. Lun, and I. R. Lemischka, Dissecting self-renewal in stem cells with rna
interference., Nature 442, 533 (2006).

[99] A. B. Cantor and S. H. Orkin, Transcriptional regulation of erythropoiesis:
an affair involving multiple partners., Oncogene 21, 3368 (2002).

170



Bibliography

[100] M. A. Cross, C. M. Heyworth, A. M. Murrell, E. O. Bockamp, T. M. Dexter,
and A. R. Green, Expression of lineage restricted transcription factors pre-
cedes lineage specific differentiation in a multipotent haemopoietic progenitor
cell line., Oncogene 9, 3013 (1994).

[101] M. H. Sieweke and T. Graf, A transcription factor party during blood cell
differentiation., Curr Opin Genet Dev 8, 545 (1998).

[102] J. E. Visvader, M. Crossley, J. Hill, S. H. Orkin, and J. M. Adams, The c-
terminal zinc finger of gata-1 or gata-2 is sufficient to induce megakaryocytic
differentiation of an early myeloid cell line., Mol Cell Biol 15, 634 (1995).

[103] C. Nerlov and T. Graf, Pu.1 induces myeloid lineage commitment in multi-
potent hematopoietic progenitors., Genes Dev 12, 2403 (1998).

[104] C. Nerlov, E. Querfurth, H. Kulessa, and T. Graf, GATA-1 interacts with
the myeloid PU.1 transcription factor and represses PU.1-dependent tran-
scription., Blood 95, 2543 (2000).

[105] N. Rekhtman, F. Radparvar, T. Evans, and A. I. Skoultchi, Direct interac-
tion of hematopoietic transcription factors PU.1 and GATA-1: functional
antagonism in erythroid cells., Genes Dev 13, 1398 (1999).

[106] N. Rekhtman, K. S. Choe, I. Matushansky, S. Murray, T. Stopka, and A. I.
Skoultchi, PU.1 and pRB interact and cooperate to repress GATA-1 and
block erythroid differentiation., Mol Cell Biol 23, 7460 (2003).

[107] P. Zhang, G. Behre, J. Pan, A. Iwama, N. Wara-Aswapati, H. S. Radom-
ska, P. E. Auron, D. G. Tenen, and Z. Sun, Negative cross-talk between
hematopoietic regulators: GATA proteins repress PU.1., Proc Natl Acad Sci
U S A 96, 8705 (1999).

[108] I. Roeder and I. Glauche, Towards an understanding of lineage specification
in hematopoietic stem cells: A mathematical model for the interaction of
transcription factors GATA-1 and PU.1., J Theor Biol 241, 852 (2006).

[109] P. Laslo, C. J. Spooner, A. Warmflash, D. W. Lancki, H.-J. Lee, R. Sci-
ammas, B. N. Gantner, A. R. Dinner, and H. Singh, Multilineage transcrip-
tional priming and determination of alternate hematopoietic cell fates., Cell
126, 755 (2006).

[110] T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a genetic
toggle switch in Escherichia coli., Nature 403, 339 (2000).

[111] O. Cinquin and J. Demongeot, Positive and negative feedback: striking a
balance between necessary antagonists., J Theor Biol. 216, 229 (2002).

171



Bibliography

[112] N. D. Theise and R. Harris, Stem Cells (Springer-Verlag Berlin Heidel-
berg, 2006), chap. Postmodern Biology: (Adult) (Stem) Cells Are Plastic,
Stochastic, Complex, and Uncertain, pp. 389–408.

[113] D. Zipori, The stem state: plasticity is essential, whereas self-renewal and
hierarchy are optional., Stem Cells 23, 719 (2005).

[114] I. Glauche, M. Cross, M. Loeffler, and I. Roeder, Lineage specification of
hematopoietic stem cells: Mathematical modeling and biological implica-
tions., Stem Cells 25, 1791 (2007).

[115] H. Xie, M. Ye, R. Feng, and T. Graf, Stepwise reprogramming of b cells into
macrophages., Cell 117, 663 (2004).

[116] L. Chen, H. Zhang, Y. Shi, K. L. Chin, D. C. Tang, and G. P. Rodgers,
Identification of key genes responsible for cytokine-induced erythroid and
myeloid differentiation and switching of hematopoietic stem cells by rage.,
Cell Res 16, 923 (2006).

[117] C. Brawley and E. Matunis, Regeneration of male germline stem cells by
spermatogonial dedifferentiation in vivo., Science 304, 1331 (2004).

[118] T. Kai and A. Spradling, Differentiating germ cells can revert into functional
stem cells in drosophila melanogaster ovaries., Nature 428, 564 (2004).

[119] S. Knaan-Shanzer, I. van der Velde-van Dijke, M. J. M. van de Watering,
P. J. de Leeuw, D. Valerio, D. W. van Bekkum, and A. A. F. de Vries,
Phenotypic and functional reversal within the early human hematopoietic
compartment., Stem Cells 26, 3210 (2008).

[120] H. B. Sieburg, R. H. Cho, B. Dykstra, N. Uchida, C. J. Eaves, and C. E.
Muller-Sieburg, The hematopoietic stem compartment consists of a limited
number of discrete stem cell subsets., Blood 107, 2311 (2006).

[121] C. E. Muller-Sieburg and H. B. Sieburg, Clonal diversity of the stem cell
compartment., Curr Opin Hematol 13, 243 (2006).

[122] I. Roeder, K. Horn, H.-B. Sieburg, R. Cho, C. Muller-Sieburg, and M. Lo-
effler, Characterization and quantification of clonal heterogeneity among
hematopoietic stem cells: a model-based approach., Blood 112, 4874 (2008).

[123] H. H. Chang, M. Hemberg, M. Barahona, D. E. Ingber, and S. Huang,
Transcriptome-wide noise controls lineage choice in mammalian progenitor
cells., Nature 453, 544 (2008).

172



Bibliography

[124] T. Schroeder, Tracking hematopoiesis at the single cell level., Ann N Y Acad
Sci 1044, 201 (2005).

[125] I. Glauche, R. Lorenz, D. Hasenclever, and I. Roeder, A novel view on stem
cell development: analysing the shape of cellular genealogies., Cell Prolif 42,
248 (2009).

[126] B. Dykstra, J. Ramunas, D. Kent, L. McCaffrey, E. Szumsky, L. Kelly,
K. Farn, A. Blaylock, C. Eaves, and E. Jervis, High-resolution video mon-
itoring of hematopoietic stem cells cultured in single-cell arrays identifies
new features of self-renewal., Proc Natl Acad Sci U S A 103, 8185 (2006).

[127] M. Punzel, D. Liu, T. Zhang, V. Eckstein, K. Miesala, and A. D. Ho, The
symmetry of initial divisions of human hematopoietic progenitors is altered
only by the cellular microenvironment., Exp. Hematol. 31, 339 (2003).

[128] O. Al-Kofahi, R. J. Radke, S. K. Goderie, Q. Shen, S. Temple, and
B. Roysam, Automated cell lineage construction: a rapid method to ana-
lyze clonal development established with murine neural progenitor cells., Cell
Cycle 5, 327 (2006).

[129] B. M. Deasy, R. J. Jankowski, T. R. Payne, B. Cao, J. P. Goff, J. S. Green-
berger, and J. Huard, Modeling stem cell population growth: incorporating
terms for proliferative heterogeneity., Stem Cells 21, 536 (2003).

[130] J. Ramunas, H. J. Montgomery, L. Kelly, T. Sukonnik, J. Ellis, and E. J.
Jervis, Real-time fluorescence tracking of dynamic transgene variegation in
stem cells., Mol Ther 15, 810 (2007).

[131] M. Stadtfeld and T. Graf, Assessing the role of hematopoietic plasticity
for endothelial and hepatocyte development by non-invasive lineage tracing.,
Development 132, 203 (2005).

[132] J. Zhang, F. Varas, M. Stadtfeld, S. Heck, N. Faust, and T. Graf, Cd41-
yfp mice allow in vivo labeling of megakaryocytic cells and reveal a subset
of platelets hyperreactive to thrombin stimulation., Exp Hematol 35, 490
(2007).

[133] B. I. Lord, Biology of the haemopoietic stem cell (Academic Press, Cam-
bridge, 1997), pp. 401–422.

[134] R. H. Cho and C. E. Muller-Sieburg, High frequency of long-term culture-
initiating cells retain in vivo repopulation and self-renewal capacity., Exp.
Hematol. 28, 1080 (2000).

173



Bibliography

[135] R. P. van Os, B. Dethmers-Ausema, and G. de Haan, In vitro assays for
cobblestone area-forming cells, ltc-ic, and cfu-c., Methods Mol Biol 430,
143 (2008).

[136] N. Uchida, W. H. Fleming, E. J. Alpern, and I. L. Weissman, Heterogeneity
of hematopoietic stem cells., Curr. Opin. Immunol. 5, 177 (1993).

[137] M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan,
Isolation and functional properties of murine hematopoietic stem cells that
are replicating in vivo., J Exp Med 183, 1797 (1996).

[138] L. Gallacher, B. Murdoch, D. M. Wu, F. N. Karanu, M. Keeney, and
M. Bhatia, Isolation and characterization of human CD34(-)Lin(-) and
CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133
and CD7., Blood 95, 2813 (2000).

[139] M. A. Goodell, Cd34+ or cd34-: does it really matter?, Blood 94, 2545
(1999).

[140] S. Soneji, S. Huang, M. Loose, I. J. Donaldson, R. Patient, B. Göttgens,
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Appendix A.

Details of the update procedure

A.1. The Pólya urn model

The general idea of the outlined update procedure for the lineage propensities, i.e.
the random choice of one lineage with a probability equal to the relative abundance
of its propensity and the subsequent update of this lineage, is primarily inspired by
the so called Pólya urn model. The original problem was stated by the Hungarian
mathematician George Pólya for an urn initially containing a number of black
and white marbles. After one marble is chosen randomly from the urn, it is put
back into the urn together with another marble of the same color (corresponding
to the stated reward mi). As no normalization procedure is applied, the total
number of marbles in the urn grows continuously and in the course of time one
color outcompetes the other (i.e. one type of marbles is contained in much higher
frequency as compared to the other). This scenario is closely resembled in the
dissipative control regime of the proposed lineage specification model.

A.2. Renormalization of the vector of lineage propensities

The normalization constant Cn defined in Equation (4.7) can be expressed as

Cn = 1 +mi =
1

1− λ
(A.1)

Under the condition, that mi for the updated lineage is small (mi ≈ 0), the
value of the newly introduced constant λ is small as well.
Using this constant in Equation (4.6) the update step reads:

x(t+ 1) =
1

Cn
x(t)(1 + m̄)

= x(t)(1 + m̄)(1− λ)

= x(t)(1 + m̄− λ+ λx)

≈ x(t)(1 + m̄− λ) (A.2)

In this formulation it is evident that the normalization corresponds to a first
order decay term acting on all lineage propensities. However, the interpretation
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of the decay rate λ requires some care. First, the decay rate is not a constant as λ
is a function of mi = fm(xi(t)) which is itself a function of the actual propensities
x(t). Thus λ has to be recalculated in every update step.
Second, as the lineage specific rewardmi can be negative in the regressive control

regime the decay rate λ is negative as well. In this case, the lineage i chosen for
the update procedure is finally decreased whereas the other competing lineages
increase their lineage propensities. For this scenario the notion of a decay rate
fails.
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Appendix B.

Modifications of the original HSC model

Prior and in parallel to the implementation of the model of lineage specification a
number of modifications have been made to the numerical implementation of the
model of HSC self-renewal and differentiation as proposed by Roeder [47]. A brief
overview of the changes is provided below.

• Universal list of all cells. Within the original model structure by Roeder
[47] dormant cells in A , activated cells in Ω (a > amin) and differentiating
cells (termed clones, a < amin) were treated in separate lists. However, as the
cell’s attributes are the same for all these cells they are now represented in
a universal list termed totalCell. For each cell element within this list the
function simulation() in sc model.cpp calls the update function termed
updateCell(). This update function, defined in sc cell class.cpp, dis-
tinguishes whether the cell is in A or Ω and calls the corresponding update
function updateDormant() or updateActive(), respectively.

• Proliferating and maturating cells. Cells with a < amin are treated as
normal cells in the universal list of cells. However, these cells undergo a pe-
riod of further divisions with turnover time clone cycle time and duration
proliferation span. The relevant parameters are specified in the input
file. The proliferation period is followed by a maturation period, in which the
cells do not undergo further divisions. After a total time (clone life span,
measured in time steps (typically hours) after the cell passed a = amin) the
cell is finally removed from the list of cells.

For the convenient description of these time ranges a linear scale paral-
lel to the logarithmic scale in terms of the affinity parameter a has been
introduced. The novel scale, termed ageOfLine, is constructed such that
ageOfLine= 0 for a = amin. ageOfLine is measured in time units of the
update process (typically hours). E.g. for a cell with a = 1 the corre-
sponding negative value for ageOfLine corresponds to the number of time
steps the cell needs to reduce their affinity until a = amin, given a certain
differentiation rate d.

• Multiple cells. For numerical efficiency, a cell object in the list of all
cells might not represent just a single cell but a group of ν cells, indi-
cated by the counter myActualCellNumber of the cell class. Technically,
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upon division the cells undergo a virtual division by multiplying the counter
myActualCellNumber by a factor 2 as compared to the generation of a new
cell object in the list of all cells.

Application of this routine requires the adaption of further functions for the
simulation of binding (change from Ω to A ) and cell death.

• Cell counting. For keeping track of the actual cell numbers in each of the
simulated compartments a general function, termed countCell(), has been
put into place. This function is called after each update step of a cell and
upon generation of new cells during division.

• Unlimited number of cell lines. The program code has been extended
to simulate a (in principle unlimited) number of different cell types with
different dynamical characteristics. The specifications have to be made in the
input file by providing the number of different cell types (number of types)
and a sufficient parameter set for each cell type.

• Cell tracking. For the analysis of cellular genealogies the tracks of each
individual cell need to be extracted from the simulation model. The corre-
sponding functionality is provided by the class sc historytree class.cpp.
Upon specification in the sequence file the tracking information of individ-
ual cells is extracted and stored in a corresponding output file. For each cell
and each time step a complete record of the cell’s defining parameters (i.e.
growth environment, attachment affinity a, lineage propensities x) is stored
along with the information of the divisional history (i.e. information about
the parent cell and the daughter cells).

• Boundary at amin. As the original distinction between cells in Ω on whether
they correspond to the list of activated cells (a > amin) or to the list of
differentiating clones (a < amin) has been abandoned; the relevant, common
update function updateActive() has been reformulated. Upon evaluation
of a cell’s probability to change into A the cell’s affinity a is multiplied with
a step function fs. This step function approaches fs(a > amin) → 1 and
fs(a < amin) → 0 in the opposite case. The steepness of the step function is
defined in the input file by the parameter steepness.

The programming of these changes and the establishment of the new simulation
package called SCMuni has been performed with great support by Katrin Horn,
Matthias Horn, Ronny Lorenz and Lars Thielecke.
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Appendix C.

Computational aspects of the model of lineage
specification

C.1. Extension of the SCMuni code

The relevant parameters for the simulation of lineage specification are defined in
the input files. The general simulation of lineage specification is under governance
of the flag parameter lineageSpecification.
The following parameter correspondence has been applied:

parameter definition
in the input file

corresponding parameter throughout the
thesis

number of lines N
initDiffState initial propensities x(t = 0)
ResponceActive reward in the dissipative control regime mi = ni

ResponceDormant saturation parameter of the sigmoid reward
function in the regressive control regime σi

rewardDormantSlope steepness parameter of the sigmoid/linear re-
ward function in the regressive control regime
bi

lowerResponceXaxis root of the sigmoid/linear reward function in
the regressive control regime xR

selectionMean lower bound of the cell death process xdeath/low
i

selectionVar selectionMean + selectionVar add up to the
upper bound of the cell death process xdeath/high

i

selectionAmplitude lineage specific cell death intensity φi

selectionBackground background cell death ΦB affecting all cells

The central function of the lineage specification within the SCMuni code is the
function lineageDevelopment(). The function belongs to the Cell class and is
generally called within the updateCell() function. Within this and a number of
secondary functions the actual vector representing the lineage propensities (named
myDiffState) is updated according to the general model outlined in Section 4.3
of the main text.
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The selective mode of lineage specification and the background cell death are im-
plemented by use of the functions lineageSelection() and backgroundApopto
sis(), respectively. Both functions belong to the Cell class and are called within
the updateCell() function, too.
The general output of the lineage specification process is written to a file named

scm ∗ DiffCountSummary.dat. This file contains a list in which for every time
step the total number of uncommitted cells (x∗

i (t) < xcom1) and cells committed to
lineage i (x∗

i (t) > xcom1) is provided. Further output (scm ∗ StatAminTransition
.dat, scm ∗ StatFinalCommit.dat, scm ∗ PoolDifferentialCount.dat) can be
generated by invocing the function enhancedStatistics in the input file. De-
scriptions of these specifically tailored output files is contained in their headers.

C.2. Analysis of the cellular genealogies

As briefly outlined in Appendix B the tracks of cellular history are written to
a particular file specified in the sequence file. As these tracking files contain
information about every tracked cell at each time point their file size increases
exponentially with the simulation time.
For the vizualization and the analysis of the resulting cellular genealogies a spe-

cific tool, called gAnalzyer, has been developed and implemented in C++.

The gAnalyzer provides the following functionalities:

• processing of the raw tracking files provided by the SCMuni code

• internal representation of the cellular genealogies in a tree like structure
(each cell element has a reference to its parental cell and, possibly, to its
daughter cells, as well as a container with all relevant tracking information
such as cell specific parameters as a function of time; this way, the topology
is formally separated from the additional information)

• analysis of cellular genealogies using the methods introduced in Chapter 6
with text-based output

• framework for the development of further, possible recursive analysis meth-
ods for cellular genealogies

• graphical representation of the cellular genealogies using different coloring
schemes and file formats (such as jpeg, gif, eps)

The gAnalyzer has been implemented, tested and documented by Ronny Lorenz.
The finite running times and the modularity of this valuable tool are attributed
to his programming skills.
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C.3. Statistical and graphical analysis of the results

Graphics are generated using the software packages gnuplot and R. The package
R was also used for statistical analysis in Chapter 7.

Sketches are produced using the programs xfig and inkscape.

The SCMuni as well as the gAnalyzer a programmed in C++. A number of
additional scripts to control sequential simulation runs are written in Perl.
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Appendix D.

Simulation protocols and parameters

D.1. Studies on the regressive control regime

For the simulation results on the analysis of the regressive control regime shown
in Section 5.1.1, a truncated version of the Roeder and Loeffler model is used. In
this version, cells are artificially kept in signaling context A . This is achieved by
setting the transition probability to signaling context Ω to 0. Thus, these cells
remain under the continuous governance of the regressive control regime. Further
parameters of the Roeder and Loeffler model, as they are discussed in Section 3.4
are of no relevance for the particular simulations.
Parameters for the regressive reward function are provided in the corresponding

Figure legends and the main text in Section 5.1.1.

D.2. Studies on the dissipative control regime

For the simulation results on the analysis of the dissipative control regime shown
in Section 5.1.2, a similar, truncated version of the Roeder and Loeffler model is
applied as in Section 5.1.1. However, studying the development in the dissipative
control regime, cells are artificially kept in signaling context Ω . This is achieved
by setting the transition probability to signaling context A to 0 and by reducing
the differentiation coefficient d → 1. Furthermore, cell division is disabled and
cells remain in G1 for the time of study. Further parameters of the Roeder and
Loeffler model are of no relevance for the particular simulations.
Parameters for the dissipative reward function are provided in the Figure legends

and the main text in Section 5.1.2.

D.3. Studies on the extended model system

For the simulation results shown for the extended model in Section 5.2 and all
following model simulations a standard parameter set for the Roeder and Loeffler
model is used which has been adapted for the simulation of B6 mice [221]. The
particular parameters are provided in Table D.1. Differences from the standard
values as well as information on the parameters governing lineage specification are
provided in the Figure legends and the main text.
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D.4. Simulation results: Lineage contribution of single
differentiating cells

Simulation results on lineage contribution of single cells in vitro are provided in
Section 5.4.1.

Model parameters for the source assays are given in Supplementary Table D.2.
These assays are initialized with 250 cells in signaling context A and 100 cells in
signaling context Ω such that the system reaches a homeostatic situation within
the initial simulation time tsim. For further transfer, cells within the transfer range
atrans fromNpool realizations of the source assay are pooled together (transfer pool).
This way the influence of system inherent fluctuations is minimized. The transfer
pool S and T, defined by the transfer range aTtrans, are provided in Supplementary
Table D.2.

Parameters of the lineage assay are given in Supplementary Table D.3. Ntransfer

cells from the transfer pool are chosen randomly and continue cell cycle at position
c = creenter. Committed cells (x∗

i > xcom = 0.9) are excluded from the transfer pool.
After expansion for tsim2 hours the composition of the progeny of the daughter cells
is evaluated. Cells with x∗

i > xcom = 0.9 are counted as finally committed cells
of the particular lineage i and add to the lineage contribution of the particular
clone.

The critical parameter of the dissipative control regime nprog
i = mprog

i = 0.15
was chosen such that the leading lineage propensity x∗

i of the large majority of
cells reaches the level xcom = 0.9 within four to ten days corresponding to the
occurrence of lineage specific markers or characteristic morphological changes.
Given the low sensitivity of the results on the choice of parameters in the regressive
control regime, parameter values are used which allow moderate deviations of the
lineage propensities from the mean level to converge within a period of one to two
days.

For the actual fit of the model results, the size of the transfer ranges aS/Ttrans has
been adapted to meet the experimental data of the discussed critical experiments
by Suda et al. [26, 27] and Takano et al. [222]. This corresponds to the modifica-
tion of the composition of cells in the transfer pools S and T from which cells are
chosen for the individual tracking. Besides the reduction from N = 6 (Suda et al.
[27]) to N = 4 (Takano et al. [222]) simulated lineages, all other parameters are
left unchanged.

For the simulation of developmental correlations between certain lineages, in-
troduced in Figure 5.20, a correlation coefficient γ14 = γ41 = 0.3 is applied in both
the source and the lineage assay. Details are provided in the main text.
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D.5. Simulation results: Comparative differentiation of
paired daughter cells

Simulation results on lineage contribution of paired daughter cells in vitro are
provided in Section 5.4.2.
Model parameters for the particular source assays are identical to those in the

case of the single cell differentiation given in Supplementary Table D.2. Addition-
ally, the same transfer pools S and T are applied for the case of the paired daughter
experiments. This is consistent with the experimental situation in which the same
selection protocols are used for both types of experiments (compare [26, 27] and
[222]).
Parameters of the simulated division assays are provided in Supplementary

Table D.4. Nparent single cells from the transfer pool are used for transfer into
the division assays. Committed cells (x∗

i > xcom = 0.9) are excluded from the
transfer pool. Transplanted cells in the division assay are always placed under the
governance of the proliferative signaling context Ω, all other individual parameters
are maintained. Within the division assay transition to signaling context Ω is
impaired for numerical simplicity. Daughter cells are cultured for ttransplant hours
after division until they are further transferred into the lineage assays.
Simulation parameters of the final lineage assay are identical to those in the

case of single cell differentiation provided in Supplementary Table D.3. As in
the previous set of simulation, cells with x∗

i > xcom = 0.9 are counted as finally
committed cells of the particular lineage i and add to the lineage contribution of
the particular clone.

D.6. Simulation results: Lineage specification in
differentiating FDCP-mix cells

The simulation for the lineage specification in differentiating FDCP-mix cell cul-
tures are presented in Section 5.4.3. In particular, the simulations are performed
using both the instructive and the selective mode of lineage specification. Pa-
rameters of the simulated differentiation assays are provided in Tables D.5 and
D.6
For the instructive mode, cells with x∗

i > xcom2 = 0.9 are counted as finally
committed cells of the particular lineage i except for the intermediate stage of
erythroblasts for which this level is decrease to xcom1/E = 0.7. Adapting the
model to the selective scenario, these values are slightly decreased. Thus, cells with
x∗
i > xcom2 = 0.85 are counted as finally committed cells and for the intermediate

stage of erythroblasts this level is decrease to xcom1/E = 0.6.
The lineage specific rewards of the dissipative control regime mprog

i = nprog
i in

the instructive mode and the lineage specific cell death amplitudes in the selective
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mode are used to fit the simulation results individually to the data on M and
E differentiation. The initial pool of cells ainit has been adapted such that no
self-renewing cells are present after three days of culture. This is suggested by
particular CFU assays carried out in parallel to the differentiation assays.

D.7. Simulation results: Scenarios for the generation of
cellular genealogies

A detailed description of the simulation routines and used parameters is provided
for the three general classes of simulation scenarios presented in Section 7.1.

Growth Scenario. For the growth scenario 400 model systems are initialized,
each with an individual cell. These individual cells are tracked for 300 hours, and
subsequently the cellular genealogies are derived. Model parameters are chosen
such that the system can establish a homeostatic situation. The parameters are
given in Supplementary Table D.7.

Homeostatic scenario. Initializing a model system with a single cell, cell num-
bers reach a homeostatic situation after about 600 hours (compare Figure 3 in the
main publication). At time point t=700 hours, all stem cells (i.e. cells with
a > 0.1) of a particular realization are uniquely marked and subsequently tracked
for the next 300 hours. For the particular, randomly chosen realization 399 cells
with affinity a > 0.1 have been found and their genealogies have been recon-
structed. Model parameters are identical to the growth scenario. The differences
in the genealogies result from the differences in the initial configuration (expansion
of a single cell in an empty model system versus homeostasis in a ”filled” system).
Parameters are given in Supplementary Table D.7.

Differentiation scenario. For the differentiation scenario, all stem cells (i.e.
cells with a > 0.1) of a particular realization are uniquely marked in the home-
ostatic situation at time point t=1500. In the next step the differentiation rate
is increased to d = 1.1 and the regeneration rate is reduced to r = 1.0 for all
cells. This way, the cells rapidly decrease their affinity a, lose the potential for
self-renewal and undergo terminal differentiation. 390 cells with a > 0.1 have been
found in the particular realization. These cells have been tracked during the next
300 h, and genealogies have been reconstructed. Parameters of the simulations
are given in Supplementary Table D.7.
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D.8. Simulation results: Instructive versus selective
lineage specification

For the simulations in Section 7.2, 500 cells are initialized inAwith affinity a = 0.5
and lineage propensities x1,2 = 0.5. In the instructive scenario, overall commit-
ment towards lineage i = 2 is achieved by tuning the lineage specific rewards ni in
the dissipative control regime. In contrast, a similar commitment in the selective
scenario is achieved by adjustung the lineage specific, selective cell death rates φi.
Parameters are adjusted such that the overall dynamics of the lineage specification
process appear very similar (compare Figure 7.10). A detailed list of parameters
is provided in Supplementary Table D.8.
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parameter value

d 1.07
r 1.1 (1.0 in the in vitro situation)
amin 0.01
τc 24 hours
τS 8 hours
τG2/M 4 hours
tprolif 500 hours
tmature 350 hours
fA(0) 0.5

fA(
Ñ
2 ) 0.3

fA(Ñ) 0.01
fA(∞) 0
NA 400 (1300)
fΩ(0) 0.5

fΩ(
Ñ
2 ) 0.3

fΩ(Ñ) 0.1
fΩ(∞) 0
NΩ 80 (280)

Table D.1.: General model parameters for the simulation of HSC organi-
zation in B6 mice.
d: differentiation coefficient; r: regeneration coefficient; τc: cell cycle duration;
τS : S-phase duration; τG2/M : duration of G2 and M-phase; tprolif : duration of
proliferation phase; tmature: duration of maturation phase; fA and fΩ: sigmoid
transition functions (see Section 3.4 ); NA and NΩ: norm cell numbers in A and
Ω , respectively; numbers in parenthesis correspond to a enlarged model system
with closely similar behavior used for the simulations in Chapter 7. Parameters
for the lineage specification model are provided either in the main text and figure
legends or following tables D.2 to D.8.

196



D.8. Simulation results: Instructive versus selective lineage specification

parameter source assay
according to
results by Suda et al.[26,
27]

source assay
according to
results by Takano et
al.[222]

d 1.07 1.07
r 1.1 1.1
amin 0.01 0.01
τc 24 hours 24 hours
τS 8 hours 8 hours
τG2/M 4 hours 4 hours
tprolif 250 hours 250 hours
tmature 200 hours 200 hours
N 6 4
dissipative control
ni (i = 1...N) 0.15 0.15
regressive control
σi (i = 1...N) 0.1 0.1
bi (i = 1...N) -1 -1
xR 1/6 1/4
tsim 744 hours 744 hours
atrans [0.000001, 0.99] [0.012, 0.99]
Npool 10 50

Table D.2.: Model parameters for the source assays (Sections 5.4.1 and
5.4.2).
N : number of lineage; ni: lineage specific reward in the dissipative control regime;
σi, bi and xR: parameters of the sigmoid reward function defined in equation (4.4);
tsim: length of initial simulations; atrans: affinity range from which cells are chosen
for transplantation into further assays; Npool: number of realizations of the source
assay used for pooling.
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parameter lineage assay
according to
results by Suda et al.[27]

lineage assay
according to
results by Takano et
al.[222]

d 1.07 1.07
r 1.0 1.0
amin 0.01 0.01
τc 16 hours 16 hours
τS 7 hours 7 hours
τG2/M 3 hours 3 hours
tprolif 250 hours 250 hours
tmature 200 hours 200 hours
N 6 4
dissipative control
ni (i = 1...N) 0.15 0.15
regressive control
σi (i = 1...N) 0.1 0.1
bi (i = 1...N) -1 -1
xR 1/6 1/4
creenter 6 hours 6 hours
tsim2 240 hours 240 hours
Ntransfer 50,000 50,000

Table D.3.: Model parameters for the lineage assays (Sections 5.4.1 and
5.4.2).
creenter point in cell cycle, at which cells enter into the lineage assay; tsim2 time
of evaluation of the lineage assay (“time of culture”). Based on the observation
that colonies with more than 2000 cells are formed within 7 days of culture (as
reported by Suda et al.[27]), a reduction of the cell cycle time τc in the lineage
assay is assumed (from 24 to 16 h).
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parameter division assay
according to
results by Suda et al.[27]

division assay
according to
results by Takano et
al.[222]

d 1.07 1.07
r 1.0 1.0
amin 0.01 0.01
τc 24 hours 24 hours
τS 8 hours 8 hours
τG2/M 4 hours 4 hours
tprolif 250 hours 250 hours
tmature 200 hours 200 hours
N 6 4
dissipative control
ni (i = 1...N) 0.15 0.15
regressive control
σi (i = 1...N) 0.1 0.1
bi (i = 1...N) -1 -1
xR 1/6 1/4
Nparent 50,000 50,000
ttransplant 3 hours 3 hours

Table D.4.: Model parameters for the division assays (Section 5.4.2).
Nparent total number of parental cells used for the paired daughter cell simulations;
ttransplant time after division at which daughter cells are separated.
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parameter differentiation assay
for FDCP-mix cells
in M-medium

differentiation assay
for FDCP-mix cells
in E-medium

d 1.07 1.07
r 1.0 1.0
amin 0.01 0.01
τc 24 hours 24 hours
τS 8 hours 8 hours
τG2/M 4 hours 4 hours
tprolif 150 hours 150 hours
tmature 70 hours 70 hours
N 3 3
dissipative control
n1 (G) 0.19 0.078
n2 (M) 0.155 0.075
n3 (E) 0.08 0.111
regressive control
σi (i = 1...3) 0.1 0.1
bi (i = 1...3) -1 -1
xR 1/3 1/3
background cell
death
ΦB 0 0
Ninit 250 250
ainit [0.01, 0.1] [0.01, 0.1]
tsim 220 hours 220 hours

Table D.5.: Model parameters for FDCP-mix cell differentiation in the
instructive mode (Section 5.4.3).
The ni are given for the particular lineages: G - granulocyte, M - macrophage,
E - erythroid. Ninit refers to the number of initial cells, ainit gives the range in
which the cells are uniformly seeded.
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parameter differentiation assay
for FDCP-mix cells
in M-medium

differentiation assay
for FDCP-mix cells
in E-medium

d 1.07 1.07
r 1.0 1.0
amin 0.01 0.01
τc 24 hours 24 hours
τS 8 hours 8 hours
τG2/M 4 hours 4 hours
tprolif 150 hours 150 hours
tmature 70 hours 70 hours
N 3 3
dissipative control
ni (i = 1...3) 0.11 0.17
regressive control
σi (i = 1...3) 0.1 0.1
bi (i = 1...3) -1 -1
xR 1/3 1/3
selective cell death

xdeath/low
i (i = 1...3) 0.5 0.5

xdeath/high
i (i = 1...3) 1 1
φ1 (G) 0.19 0
φ2 (M) 0.155 0.022
φ3 (E) 0.08 0.2
Ninit 250 250
ainit [0.01, 0.1] [0.01, 0.1]
tsim 220 hours 220 hours

Table D.6.: Model parameters for FDCP-mix cell differentiation in the
selective mode (Section 5.4.3).
The individual probabilities φi for the selective cell death process ΦS differ for the
three lineages: i = 1 - granulocyte (G), i = 2 - macrophage (M), i = 3 - erythroid
(E).
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parameter growth
scenario

homeostatic
scenario

differentiation
scenario

d 1.07 1.07 1.1
r 1.035 1.035 1.0
amin 0.1 0.1 0.1
τc 24 hours 24 hours 24 hours
τS 8 hours 8 hours 24 hours
τG2/M 4 hours 4 hours 24 hours
tprolif 220 hours 220 hours 220 hours
tmature 175 hours 175 hours 175 hours
N 3 3 3
dissipative control
ni (i = 1...3) 0.14 0.14 0.14
regressive control
σi (i = 1...3) 0.2 0.2 0.2
bi (i = 1...3) -1 -1 -1
xR 1/3 1/3 1/3
tsim 300 hours 300 hours 300 hours
tracked cell pool 400 independent

simulations each
initialized with
one cell

one simulation,
tracking all
399 cells with
a > amin from
homeostatic
situation at time
point 700

one simulation,
tracking all
390 cells with
a > amin from
homeostatic
situation at time
point 1500

Table D.7.: Model parameters for the comparison of cellular genealogies
(Section 7.1). tsim: observation period for the individual trajectories.
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parameter instructive selective

d 1.07 1.07
r 1.0 1.0
amin 0.01 0.01
NA 400 400
NΩ 800 800
τc 24 hours 24 hours
τS 8 hours 8 hours
τG2/M 4 hours 4 hours
tprolif 200 hours 200 hours
tmature 200 hours 200 hours
N 2 2
dissipative control
n1 0.043 0.08
n2 0.065 0.08
regressive control
σ1,2 0.1 0.1
b1,2 -1 -1
xR 1/2 1/2
selective cell death

xdeath/low
1,2 0.6 0.6

xdeath/high
1,2 1 1
φ1 0.0 0.07
φ2 0.0 0
background cell
death
ΦB 0.0075 0.0
tsim 200 hours 200 hours
initial cell pool 500 cells in Ωwith

affinity a = 0.1
and lineage propensi-
ties x1,2 = 0.5

500 cells in Ωwith
affinity a = 0.1
and lineage propensi-
ties x1,2 = 0.5

Table D.8.: Cellular genealogies under instructive and selective lineage
specification (Section 7.2).
ΦB: background cell death as defined in equation (4.8).
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Selected mathematical abbreviations

S = {S1, S2, . . . , Sn} . state space vector

a, c . . . . . . . . . . . . . . . . . cell’s affinity to signaling context A , position in the cell cycle

A, Ω . . . . . . . . . . . . . . . signaling contexts

d, r . . . . . . . . . . . . . . . . differentiation, regeneration coefficient

τc, τG1, τS, τG2/M . . . . duration of cell cycle, G1, S, G2/M-phase

α, ω . . . . . . . . . . . . . . . . . transition intensities between A and Ω

fA, fΩ . . . . . . . . . . . . . . . sigmoid transition functions

NA, NΩ . . . . . . . . . . . . . norm cell numbers in A and Ω

N . . . . . . . . . . . . . . . . . . . number of lineages

x = {x1, x2, . . . , xN} . vector of lineage propensities

x̄ = 1/N . . . . . . . . . . . . mean lineage propensity level

x∗
i . . . . . . . . . . . . . . . . . . . lineage propensity of the dominant lineage

mi . . . . . . . . . . . . . . . . . . lineage specific reward

fm(xi(t)) . . . . . . . . . . . . functions defining the lineage specific reward

ni . . . . . . . . . . . . . . . . . . . constant, lineage specific reward in the dissipative control regime

σi, bi, xR . . . . . . . . . . . . parameters of the reward function in the regressive control regime

ΦS,ΦB . . . . . . . . . . . . . . selective cell death intensity, background cell death intensity

φi . . . . . . . . . . . . . . . . . . . lineage specific cell death intensities

xdeath/low
i , xdeath/high

i . parameters of the selective cell death intensity

xcom1/2 . . . . . . . . . . . . . . threshold values for the phenotypic mapping
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C = {ci, i = 0 . . . n} . set of edges of a cellular genealogy (cells)

Cdiv . . . . . . . . . . . . . . . . subset of all cells which undergo division

Cdeath . . . . . . . . . . . . . . . subset of all cells which undergo cell death

Cterm . . . . . . . . . . . . . . . . subset of all cells with censored observation

Cleaf . . . . . . . . . . . . . . . . . subset of leaf cells

L . . . . . . . . . . . . . . . . . . . total number of leaf cells in a cellular genealogy

D = {dj, j = 1 . . . m} set of branching points of a cellular genealogy (divisions)

D . . . . . . . . . . . . . . . . . . . total number of divisions in a cellular genealogy

gi . . . . . . . . . . . . . . . . . . . generation of cell ci

rpq . . . . . . . . . . . . . . . . . topological distance between two cells cp and cq

χi . . . . . . . . . . . . . . . . . . . fate information for cell ci

B, Bchar . . . . . . . . . . . . . branch length, characteristic branch length

Brange . . . . . . . . . . . . . . . range of branch lengths

C, Cw . . . . . . . . . . . . . . . Colless’ index, weighted Colless’ index

A, Ag . . . . . . . . . . . . . . . cell death index, cell death index in generation g

MI . . . . . . . . . . . . . . . . . mutual information

R . . . . . . . . . . . . . . . . . . . average minimal distance between characteristic events
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