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Abstract
Wireless multihop ad hoc communication networks represent an infrastructure-
less and self-organised generalisation of todays wireless cellular networks. Lacking
a central control authority, the ad hoc devices (nodes) have to organise data traf-
fic and information flow by use of distributive, local control actions such that the
overall, global system performs in an optimal way. One important issue is the con-
nectivity of a network which is a prerequisite for multihop connections between
participating nodes. A simple distributed protocol is constructed by referring to
continuum percolation, guaranteeing strong connectivity almost surely and inde-
pendently of various spatial arrangements of ad hoc nodes. For the statistical
analysis of the dynamical properties of data traffic a generic simulation model is
developed that includes the relevant mechanisms of a real-world scenario. By in-
troducing graph theoretical measures an analytical understanding is provided on
a global as well as on a local, single-node scale. The overall network performance
is limited by heavily used bottelneck nodes. These limitations are removed with
a newly developed distributed routing algorithm based on the idea of adaptive
distance vector routing. The algorithm is able to independently learn about the
congestion state of the network and to adapt the routing decisions to local changes
in the network load.

Zusammenfassung
Drahtlose multihop ad hoc Kommunikationsnetze stellen eine selbstorganisieren-
de Verallgemeinerung heutiger zellulärer Netze dar. Da diese ad hoc Netze ohne
zentrale Kontrolleinheiten arbeiten, ist es Aufgabe der beteiligten Geräte (Kno-
ten) selbständig ein Netzwerk aufzubauen, das durch lokale Regeln den Austausch
von Daten ermöglicht und dabei zu einem optimalen Gesamtzustand des Systems
führt. Eine erste wichtige Frage ist die nach der Verknüpftheit des Netzwerkes, die
eine Grundvoraussetzung für multihop Verbindungen zwischen einzelnen Knoten
darstellt. In Anlehnung an die Kontinuumsperkolation wird ein lokales Proto-
koll vorgestellt, das Verknüpftheit weitgehend sichert und sich unabhängig auf
verschiedene räumliche Anordnungen der ad hoc Knoten einstellt. Für die statis-
tische Analyse der dynamischen Eigenschaften des Datenverkehrs auf speziellen
ad hoc Netzen wird ein realitätsnahes Simulationsmodell aufgestellt. Durch die
Einführung graphentheoretischer Maße können sowohl globale wie auch lokale
Observable adäquat beschrieben werden. Die Gesamtleistung des Systems wird
durch besonders häufig genutzte Knoten beschränkt. Durch die Einführung eines
neuartigen, lokalen Algorithmus zur Steuerung des Datenverkehrs können diese
Beschränkungen umgangen werden. Der Algorithmus ist in der Lage, selbständig
den Lastzustand des Netzwerkes zu erlernen und darüber hinaus den Datenver-
kehrsfluss der lokalen Lastverteilung anzupassen.
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Der Glaube an die Wahrheit beginnt mit dem Zweifel
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Introduction

Todays wireless communication is almost exclusively based on the concept of cellu-
lar networks [1, 2, 3] like in the existing GSM1 or the upcoming UMTS2 networks.
A communication cell has to be understood as the spatial area in which all mobile
devices are wirelessly connected to the same base station. The base stations rep-
resenting their communications cells are themselves linked by a high bandwidth
backbone structure. Each sending mobile device first contacts its nearest base
station, which in turn provides a route either intracellularly by connecting to an-
other device within the same communication cell or intercellularly by employing
the backbone structure. In the latter case the base station in which the intended
receiver is registered is contacted and provides the enquired route. The left sketch
in Figure 0.1 visualises a simple cellular network. As part of the centralised
backbone infrastructure each base station acts as a route manager, possesses the
network information, controls the single-hop communications within its cell and
assigns different channels to its various mobile clients. In order to obtain an op-
timal coverage for a certain area the base stations need to be intelligently placed.
In almost all cases the location of the base stations remains fixed which leads to
a static infrastructure, hard to change and adapt to new, revised needs. In order
to provide extended communication services in remote areas or in emergency sit-
uations this concept has considerable disadvantages. This inflexibility motivates
an adaptive and infrastructure-less concept that does not require a supervising
control authority: self-organising wireless mobile ad hoc networks [4, 5, 6].

Since a central control authority is missing in a wireless ad hoc network sending
devices use inbetween mobile devices to communicate with the intended receiver
via so called multihop connections. The inbetween devices just transfer the data
and so act as routers. These basic principles are shown in the right sketch of Figure
0.1. As a control authority is missing, the participating devices need coordina-
tion amongst themselves to ensure network connectivity, efficient discovery and
execution of end-to-end routes and avoidance of data packet collisions on shared
radio channels. A further challenge for the devices is their own mobility effecting
the persistence and reliability of multihop connections. All these features are of
a global nature and can only be established by a complex interaction between a
multitude of different mobile devices. The idea of a wireless ad hoc communication
is to base the organisation and maintenance of the whole network on local coor-

1Global System for Mobile communication
2Universal Mobile Telecommunications System
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Introduction

Figure 0.1: Basic layout of a cellular and a multihop ad hoc network
The left sketch illustrates a cellular network consisting of ten mobile devices (de-
picted as mobile phones) assigned to three communication cells identified by the
base stations (black). The base stations are linked by a backbone structure
(green). A communication between the two highlighted devices (marked with
blue) is set up by use of the device’s link to the base stations and the underlying
backbone structure. In an ad hoc network, shown right, the same communication
would employ a multihop route via inbetween devices (also marked in blue). In
such a network no central authorities like base stations exist.

dination rules for each mobile device. The mobile device communicates directly
only with its close by current spatial neighbours. Hence, it can only gain direct
information about the state of its local surrounding. Since this is the complete
input into the coordination rule, the latter is by definition local. Based on these
coordination rules the device can for example readjust its transmission power to
its new surrounding or perform special operations to access routing information.

The future of wireless ad hoc communication networks lies in areas where a fast
adaption to different local surroundings without any predefined infrastructure is
desired. Here these kind of networks are superior in the way that they completely
self-organise a communication infrastructure and manage data exchange within
the network. The idea of multihop ad hoc networks might also be employed to
enhance the coverage of classical cellular wireless communication for example for
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mobile phones or wireless LAN3. Within these so called hybrid networks only
mobile devices in the immediate surrounding of a base station establish direct
connections to the latter. Other more distant devices employ a multihop connec-
tion to connect to the base station. Shorter transmission ranges as they occur in
multihop connections can lead to a reduction of transmission power. Besides the
aspects of a sensible energy management reduced emission has less influence on
the physical environment. Detailed studies about the impact of electro-magnetic
radiation used for communication services on the human body (“electro-smog”)
still need to be prepared.

The structure and properties of communication networks other than wireless
have also been heavily discussed within the last years. Intensive research was
carried out especially focusing on the internet and data transfer within this net-
work structure. Key issues have been for example phase transition like behaviour
from an uncongested to a congested traffic regime [7, 8, 9, 10], self-similar data
traffic [11, 12, 13] and network structure [14, 15, 16, 17]. It has to be pointed out
that this work almost exclusively concentrates on communication networks based
on wired connections. This implies that there are no topological restrictions to
the structure of the network. In contrast wireless communication networks do
not have dedicated links between participating devices. Communication between
two devices is based on a shared medium. This causes a mutual interaction and
influence of different communication actions and thus limits communication to
spatially confined areas. These topological limitations have clear effects on the
structural properties of wireless communication networks and mark a border to
their wired counterparts. Additionally the mutual interactions of different com-
munications force the system towards a far more sensible management of data
transfer in order to not destruct sending and receiving events. For this reason a
medium access control protocol mac is employed. This protocol is a set of rules
controlling the access of the sending device to the shared wireless medium. The
protocol is also in charge of the temporary blocking of neighbouring devices that
might interfere with a permitted transmission. It is just this effect that works
against the tendency to assign higher transmission powers in order to reach a
larger neighbourhood. Such a latter action might be in favour of more routing ef-
ficiency as more direct and longer-ranged connections are established, but medium
access control then counteracts as now more neighbours are being blocked during
one-hop transmissions.

The mentioned facts indicate that a wireless ad hoc communication network has
to by studied as a complex system where the interplay of the constituents governs
the topology as well as the dynamical behaviour of the system in a non-trivial way.
Probabilistic arguments, as they are common in the concepts of modern statistical
physics, are necessary in order to describe such a non-deterministic system [18].

3Local Area Network
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Introduction

The ability of a wireless ad hoc network to self-organise based on the discovery
and usage of local interactions will be reviewed under this aspects.

This thesis focuses on three major issues of wireless ad hoc communication:
connectivity of the networks, statistical aspects of data traffic and self-organising
routing control. In Chapter 1 a precise definition of random geometric graphs in
the context of wireless ad hoc communication networks is given. A closer look
on various spatial point patterns, the propagation-receiver model and different
rules for the assignment of transmission power is included. Chapter 2 focuses on
the question how the power assignment has to be managed in order to provide a
highly connected network structure. From the viewpoint of continuum percolation
[19, 20] the dependence of the probability for the occurance of a highly connected
network is studied and a critical range is given above which an ad hoc network
graph is almost surely connected. Within the research activities for this thesis
large parts of this chapter have already been published [21]. Based on the previous
results Chapter 3 studies the global as well as local statistical properties of simple
generic data traffic on ad hoc network graphs. By introducing graph theoretical
measures an analytical understanding of a number of dynamical features can be
provided. Of particular interest is the queueing behaviour of data packets at the
nodes of the network [22], which is employed to explain many phenomena of the
generic data traffic. In Chapter 4 the so far used approach for packet routing based
on a shortest path metric is completely reorganised. A distributive routing scheme
is provided that independently learns about the congestion state of the network
and additionally adapts the routing decisions to local changes in the network load.
Chapter 5 concludes with a summary and a brief outlook to future research.
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1 The structure of wireless ad hoc

communication networks

The structural analysis of complex networks has recently received much attention
[14, 15, 16]. Complex networks can be found in many disciplines of science includ-
ing technology [23, 24, 25], sociology [26], biology [27, 28, 29, 30] just to name a
few. Much of this research was dedicated to the investigation of statistical proper-
ties in real-world networks [17, 31, 32] and their modelling by suitable algorithms
representing behaviours found in the corresponding real-world systems. The ap-
proach taken for the construction of wireless ad hoc networks is slightly different.
Due to the lack of an existing real-world system that could be studied the neces-
sary construction of an appropriate communication network has to be performed
in order to provide a suitable basis for a possible future implementation.

Section 1.1 introduces the conceptual notion of network graphs in general. The
subsequent sections focus on particular properties of wireless ad hoc networks.
To account for different spatial distributions of mobile devices in a certain area
different point patterns are presented in Section 1.2. The propagation-receiver
model is discussed in Section 1.3. Section 1.4 introduces different rules for the
transmission power assignment among all mobile devices of a wireless network.

1.1 Random geometric graphs

The wireless communication networks are modeled as graphs G = (N ,L) [33].
N refers to the set of mobile devices of a network that from now on will be
called nodes. Let N = |N | denote the number of nodes in N . The set of links
that connect the nodes of the network is represented by L. In general these are
directed links i→ j. In that sense a node i can influence node j. For a vice versa
dependence a link j → i is required. If both links i → j and j → i exist for two
nodes i, j ∈ N the link is called a bidirectional link i↔ j. The subset Lbidir ⊂ L
represents the complete set of all bidirectional links in the graph G. Bidirectional
links proved to play a crucial role in wireless communication. The subset Ni ⊂ N
is called the communication neighbourhood of node i and represents the complete
set of nodes j ∈ Ni that all have bidirectional links j ↔ i in Lbidir with node i.

The existence of links in L is a direct result of the location of the nodes in
N , their individual transmission power assignment and the propagation-receiver
model. Because of the importance of the location of the nodes for the link con-
struction the resulting network graphs are denoted as random geometric graphs
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1 The structure of wireless ad hoc communication networks

[34]. The particular topics are addressed in detail in the following sections.

A communication route or path is a sequence of nodes such that there are
bidirectional links in Lbidir between all consecutive pairs of nodes. A shortest
path σi,f between two nodes i, f ∈ N is a route containing fewest possible number
of nodes; the number of links of a shortest path σi,f is called the distance dif . The
average over all distances D = 〈dif〉 is referred to as the diameter of a network.

A scaling of the diameter D ∼
√
N with the network size can be expected.

Mapping a network of size N on a lattice, where the nodes are connected by the
grid lines, it is intuitive that the average distance of the nodes grows with the
lattice side length

√
N . This finding was verified for the network models studied

in this thesis [35].

A convenient way to describe the attribution of the links in L to the set of nodes
represented by N is the so called N ×N adjacency matrix [30]:

aij =

{
1 link i→j exists
0 link i→j does not exist or i = j

(1.1)

Within this notation bidirectional links are identified by aij = aji = 1. An ad-
jacency matrix also representing unidirectional links (meaning aij 6= aji = 1 or
vice versa for at least one pair i, j ∈ N ) can be transformed into a corresponding
adjacency matrix only representing the existing bidirectional links by a pointwise
multiplication abidir

ij = aijaji.

The node degree ki of node i is the number of nodes contained in Ni. It simply
counts the number of bidirectional neighbours of i. An alternative definition is pos-
sible by use of the bidirectional version of the adjacency matrix: ki =

∑
j∈N a

bidir
ij .

In an analog manner we can define the outgoing node degree kout
i =

∑
j∈N aij

and the ingoing node degree kin
i =

∑
j∈N aji. The outgoing node degree counts

all nodes j ∈ N if there is a link (i → j) ∈ L. The corresponding outgoing
neighbourhood of i is denoted N out

i . In similar fashion N in
i is defined.

In good approximation to most of the future applications of wireless ad hoc
communication a modelling in two spatial dimensions is reasonable. Thus a node
is represented by its spatial coordinates (x, y). In principle the model should
be based on spatio-temporal point patterns, where elements of motion do enter
[36]. Although mobility modelling is crucial once the velocity of the nodes is large
compared to their mutual distances, for reasons of simplicity a quasi-static picture
is chosen. An ensemble of successive static point patterns can be considered as a
series of snapshots of a slowly changing spatio-temporal environment.

Without lack of generality all nodes i ∈ N are assigned positions in the unit
square (x, y)i ∈ [0, 1]× [0, 1]. A more detailed description of the assignment of the
positions for different point patterns is given in the following section.
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1.2 Spatial point patterns

1.2 Spatial point patterns

Chapter 2 of this thesis asks how the transmission power assignment of the nodes
in N has to be managed in order to provide a highly connected network structure.
In order to learn about the dependence of connectivity on the spatial distribution
of the set of nodes N three different generic random spatial point patterns are
used: a homogeneous, a multifractal and a Manhattan point pattern. The point
patterns are inspired by possible simplified real-world scenarios. The generation
of these different patterns is briefly explained in the following lines.

Homogeneous point pattern In a random homogeneous point pattern each
of the N nodes of N is given a random position (x, y) ∈ [0, 1]× [0, 1]. A typical
realisation is illustrated in Figure 1.1. By definition it does not show generic
clustering.

Multifractal point pattern One way to construct simple clustered point pat-
terns is to employ a binary multiplicative branching process. The non-uniform
probability measure supported on the unit square is constructed by iteration: at
first the parent square is divided into four offspring squares with area 1/4. Two
randomly chosen offsprings get a fraction (1+ω)/4 of the parent probability mass
m = 1, whereas the remaining two get a fraction (1− ω)/4. In the next iteration
step each offspring square follows the same probabilistic branching rule and non-
uniformly redistributes its probability mass onto its own four offsprings. After j
iteration steps the probability mass m = 1 has been non-uniformly subdivided
onto 4j subsquares with area 1/4j, where

(
j
i

)
2j of these subsquares (0 ≤ i ≤ j)

come with probability mass [(1 +ω)/4]i[(1−ω)/4]j−i. One after the other each of
the N points to be distributed in N is given an independent and uniform random
number between 0 and 1, which, given some probability-mass-weighted ordering of
the 4j subsquares, corresponds to exactly one subsquare, onto which the particle
is deposited and randomly placed inside. One such realisation of a point pat-
tern is shown in Figure 1.1. The observed hierarchical clustering of nodes is due
to the hierarchical branching structure of the iteration process. The probability
measure constructed with such a multiplicative branching process is a multifractal
[37]. The construction of multifractal fields has some importance in such diverse
fields as turbulence [38, 39], finance [40, 41], Internet traffic [42], high-energetic
multiparticle dynamics [43] and deterministic chaos [44], just to name a few.

Manhattan point pattern As a third generic class of spatial point patterns
a Manhattan street pattern is used. Nx and Ny streets are equidistantly placed
parallel to the x- and y-axis, respectively. One after the other nodes of N are
randomly placed onto one randomly chosen street. Figure 1.1 gives an illustration

7



1 The structure of wireless ad hoc communication networks

of one realisation.

1.3 Radio propagation-receiver model

The existence of a communication link between two nodes is determined by the
transmission power of the nodes, the characteristics of the radio propagation
medium as well as the receiving efficiency. According to a simplified propagation-
receiver model a node i can listen to a transmitting node j, if relative to a noise
the power received at i is larger than the signal-to-noise ratio snr:

Pj/R
α
ji

noise
≥ snr , (1.2)

Pj denotes the transmission power of node j and Rji represents the Euclidean
distance between j and i. The path-loss exponent α is assumed to be constant;
depending on the characteristics of propagation its value typically falls into the
regime 2 ≤ α ≤ 6. A specific fixation of the value of α is not required for the
generic view within this thesis. Without any loss of generality the variables noise
and snr are set equal to one, implying a rescaling of the transmission power Pj.

The condition (1.2) guarantees that node i is able to hear node j. This alone
would define a unidirectional link j → i. If (1.2) also holds for a communication
i → j then the nodes i and j are connected by a bidirectional link i ↔ j. Al-
though not strictly required, bidirectional links are preferred for the operation of
wireless ad hoc networks because many communication protocols require instant
feedback. Furthermore, the absence of unidirectional links reduces interference
effects. Throughout this thesis a communication link as well as the terms neigh-
bour and neighbourhood of a node will always refer to bidirectional connections.
Otherwise it will be explicitly stated.

The link construction can be given a simple geometric interpretation as visu-
alised in Figure 1.2. For a given transmission power Pj condition (1.2) translates

into a maximum range Rji = P
1/α
j . All nodes i ∈ N that lie inside this circle with

radius Rji around node j are able to hear this node. For a communication link
to exist between nodes j and i, i has to lie inside j’s circle with radius Rji and j
has to lie inside i’s circle with radius Rij. For the case that all Rji = R are iden-
tical, this link construction matches the standard link construction of continuum
percolation [45].

The values for the transmission power Pi are in general normalised by P norm.
The normalisation P norm = (Rnorm)α comes by setting π(Rnorm)2 = 1/N . The
1 in the numerator comes from the area of the unit square. Thus 1/N can be
interpreted as an inverse density of nodes. π(Rnorm)2 has to be understood as the
area in which on average only one node is placed in a realisation of a random
homogeneous point pattern; P norm is the transmission power to cover exactly this
area.

8



1.3 Radio propagation-receiver model

Figure 1.1: Different spatial point patterns
The upper representation corresponds to the random homogeneous point pattern,
the middle to a multifractal point pattern with j = 5 branchings and weight
ω = 0.4, and the lower to a Manhattan pattern with Nx = Ny = 7. All graphs are
shown for a set of 200 nodes. Each point is given a transmission power to reach
on average 5 neighbours given a homogeneous distribution of nodes. The largest
connected cluster is marked with green links.
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1 The structure of wireless ad hoc communication networks

Figure 1.2: Geometric interpretation of the link construction
The left and the right node are both inside the transmission range of the central
node and can listen to its transmissions. Additionally the central node is within
the transmission range of the right node but not within the range of the left
one. Thus a bidirectional link only exists between the central and the right node.
Between the left and the central node only a unidirectional link exists. The left
node does not hear the right node and vice versa. Thus no direct link between
them exists at all.

1.4 Power assignment

In general it can be distinguished between two kinds of transmission power as-
signment. Employing global power assignment each node i ∈ N is assigned its
individual transmission power Pi according to requirements based on global ob-
servables. The specific transmission power of a node might be chosen according
to an independently and identically distributed (iid) random variable [46, 47] or
governed by a global optimisation function for the whole network [35]. In contrast
the local power assignment leaves it to a node to adjust its own transmission power
based on local observables the node itself can acquire. The local rules should be
set up in a way that an optimal network state for all nodes N is reached. A
couple of different power assignments have been employed and will be introduced
in detail in the following lines.

Constant transmission power In this simple global rule the same transmis-
sion power Pi = P is assigned to all nodes i ∈ N . All existing links are then bidi-
rectional. This is the most widely studied rule for power assignment in wireless

10



1.4 Power assignment

multihop communication networks [46]. It will be used as reference throughout
the thesis and is referred to as constant-P rule. The question how the specific
choice for the constant transmission power is made will be addressed in Section
2.2.

iid transmission power Due to the homogeneous power assignment of the
constant-P rule all nodes have an identical transmission range. In comparison
to the small world networks [48] where a couple of long-range links lead to a
better connectivity and a smaller diameter D a modification of the constant-P
rule including a number of long-range links seems worth studying. These long-
range links have to be represented by nodes with higher transmission power. The
simplest heterogeneous rule in this context is the iid-P link rule [47]. It treats
the transmission power values assigned to the nodes in N as independently and
identically distributed (iid) random variables. Independently from the other nodes
each node chooses its transmission power according to the same global probability
distribution p(P ) with mean 〈P 〉.

As a flexible representative a bimodal distribution

p(P ) =
β2

β1 + β2
δ
(
P − 〈P 〉(1− β1)

)
+

β1

β1 + β2
δ
(
P − 〈P 〉(1 + β2)

)
(1.3)

is chosen. It comes with two parameters β1 and β2 determining the variance and
skewness of this distribution, but leaving the mean 〈P 〉 untouched. The previously
used constant-P rule is reproduced once β1 = 0 or β2 = 0.

Minimum node degree The widely used constant-P assignment has notorious
drawbacks. First of all, it is a global rule, where nodes need to access informa-
tion about the complete network. Second, the used constant transmission power
strongly depends on the nature of the underlying spatial point patterns [21]. It is
obvious that a more flexible power assignment is desired that only collects local
information and acts in a decentralised manner. The minimum node degree rule
introduced in [21] is a first and promising approach in this direction.

By exchanging so-called hello and hello-reply messages each node i ∈ N is able
to access direct information only from its immediate neighbours Ni. A simple local
observable for a node is the number of its communication neighbours, referred to
as node degree ki. Based on this observable alone, the simple minimum node
degree strategy for a node i is to adjust its transmission power to have at least
kmin
i bidirectional neighbours in Ni.
Upon setting up the communication links to the other nodes, a node i attaches

to its hello message information about its current neighbourhood Ni and its cur-
rent transmission power Pi. Starting with Pi = Pmin, the node increases its
transmission power by a small amount once it has not reached a minimum node

11



1 The structure of wireless ad hoc communication networks

Figure 1.3: Minimum node degree rule
As an example suppose the required minimum degree to be kmin

i = 2. The three
nodes on the right fulfil this requirement simply by use of the red links. If the
left nodes only have a rather small transmission power they can only hear the
other left partner - marked by their red link. But they have not yet reached
kmin
i = 2. According to the minimum node degree rule they start increasing their

transmission powers in order to reach more communication neighbours. At a
certain point the central node can hear their hello-messages and does itself increase
its transmission power such that the node on the left can hear it, too. Now these
nodes have established additional bidirectional links, marked with green. The
two left nodes now fulfil the minimum degree requirement kmin

i = 2. In contrast
the central node now has four neighbours. This is more than originally required.
The increased transmission power was necessary to serve the needs of the more
isolated nodes on the left side.

degree kmin
i . Whenever another node j, which so far does not belong to the set of

neighbours Ni, hears the hello message of the original node i for the first time, it
realises that the latter has too few neighbours, either sets its transmission power
equal to the transmission power of the hello-sending node i or leaves it as before,
whichever is larger, and answers the hello message. Now the original and new
node are able to communicate back and forth and have established a new commu-
nication link i↔ j. The original node i adds the new node j to its neighbourhood
Ni as does j the other way around. Only once the required minimum node degree
kmin
i is reached, the original node i stops increasing its transmission power for

its hello transmissions. While some of the nodes will end up having exactly kmin
i

neighbours, some others are forced to have more than kmin
i neighbours in order

to give an additional bidirectional link to a node which so far has not accumu-
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1.4 Power assignment

lated enough neighbours. The transmission power of these nodes is larger than
necessary to obtain only kmin

i neighbours for themselves. As a simple example see
Figure 1.3.

The enforcement of already satisfied nodes to reply to hello sending nodes is a
crucial part of the minimum node degree rule. It guarantees that nodes do not get
trapped in frustrated states. In the absence of an enforcement to reply to a node
not having the required number of kmin neighbours, this node would continue to
increase its transmission power as long as it is ignored by the already saturated
nodes. This could lead to unnecessary high transmission powers that interfere
with a multitude of possible communications.

A detailed insight in the algorithmic implementation of the minimum degree
rule is presented in [21].

Whatever approach is chosen, according to (1.2) the actual power assignment
to each of the nodes in N precisely defines the set of links L. Here the special
properties of a wireless communication network become apparent: the set of links
L is a direct result of the spatial position (x, y)i and the transmission power
Pi of each node i ∈ N . In that sense not every possible set of links L can
be realised by an appropriate power assignment. This is in clear contrast to any
wired network where such restrictions do not influence the existence of connections
between different nodes.

13





2 Continuum percolation approach to network

connectivity

For the operation of a multihop ad hoc communication network it is desired that as
many as possible nodes within a certain area can communicate with each other.
The ability of two nodes to communicate is mapped onto the question if com-
munication routes in the sense of Section 1.1 exist. This issue is referred to as
connectivity of a network [49, 50, 51, 21]. This chapter focuses on the question
how the transmission power of the nodes within the three introduced power as-
signment rules from Section 1.4 has to be adjusted in order to provide a highly
connected network structure. As already pointed out it is the special property
of the mac protocol to counteract higher transmission powers by an increased
number of blocked nodes during one communication. It is in that sense desired
to achieve connectivity of a network by possibly low or at least well distributed
transmission power.

For a fixed set of nodes N the set of links L directly depends on the transmission
power of each node. In that context the probability for the connectivity of a net-
work depends on the transmission power assignment of the nodes in N . According
to equation (1.2) the transmission power Pi can be transfered into transmission
ranges Rij that allow a geometric interpretation of the link construction as vi-
sualised in Figure 1.2. Similar issues are approached by continuum percolation
theory [19]. Here one tries to determine a critical range of transmission such that
the resulting links form a highly connected graph. Such a critical transmission
range can be defined for ad hoc network graphs as well. Furthermore it can be
translated into a critical node degree kcrit. The node degree ki itself is a local ob-
servable of each node i ∈ N . This finding gives again reason for the construction
of the minimum node degree rule in Section 1.4.

Within Section 2.1 of this Chapter suitable observables for the connectivity will
be introduced. Section 2.2 investigates the connectivity issue for the different
power assignments introduced in Section 1.4. Section 2.3 addresses the issues of
the transmission power and node degree distributions for different power assign-
ments and different point patterns. Section 2.4 concludes with a brief summary.

2.1 Observables

For the investigation on the connectivity of a network graph G two observables
are introduced.

15



2 Continuum percolation approach to network connectivity

Giant component The giant component of a network is given as the set of
nodes N giant ∈ N being part of the largest bidirectionally connected cluster ap-
pearing in a graph realisation G = (N ,L). Normalising the number of nodes in
N giant to the total number of nodes N the relative giant component G ∈ [0, 1]
can be defined [33, 34]. A simple flooding algorithm is used to determine the
giant component of a graph realisation: a random node i is tagged in first place,
then its neighbours j ∈ Ni are tagged, which then continue to tag their untagged
neighbours, and so on, until the corresponding cluster is saturated. This proce-
dure is repeated for all untagged nodes, until all nodes of the graph are tagged.
By definition, the nodes in the largest found cluster are referred to as the giant
component N giant. See also Figure 1.1 for reference.

One-connectivity One-connectivity is defined as the probability that all nodes
i ∈ N can communicate with each other. In other words it is the probability to
find a network realisation G with G = 1 which is equivalent to N giant = N .

One-connectivity has to be seen as a specific version of the k-connectivity. A
graph G is called k-connected if between every pair of nodes there exist at least k
independent paths, which implies, that once k− 1 nodes are removed at random,
the graph remains at least one-connected. A k-connected ad hoc communication
network is more flexible and robust to routing failure. In a numerical implemen-
tation (k>1)-connectivity requires to check for each of the N(N − 1)/2 pair of
nodes belonging to one graph whether at least k independent paths exist. This is
algorithmically a very extensive procedure, that suggest a switch from costly k-
to cheap pseudo-k-connectivity. Given one-connectivity, the latter only requires
each node i to have at least k neighbours in Ni. In fact, a theorem exists [52],
which, translated into the language of ad hoc network graphs, guarantees for a
geometric graph ensemble based on random homogeneous point patterns and the
constant-P rule of Section 1.4 that in the limit of large N the probabilities for k-
and pseudo-k-connectivity converge as they approach one.

2.2 Continuum percolation for different power
assignments

2.2.1 Constant transmission power

The average relative giant component 〈G〉 as a function of 〈P 〉 obtained from a
sample of 500 geometric graph realisations of the random homogeneous spatial
point patterns and employing the constant-P rule is shown in Figure 2.1. The
brackets 〈...〉 refer to the sample average over the graph realisations. For the
constant-P rule the average transmission power sampled over the nodes of a graph
realisation 〈P 〉N equals the transmission power Pi of an individual node i since
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Figure 2.1: Giant component for networks of different size
Average relative giant component 〈G〉 as a function of transmission power
〈P 〉/P norm. A sample of 500 geometric graphs generated with random homoge-
neous spatial point patterns and the constant-P rule has been used. The path-loss
exponent of equation (1.2) has been set to α = 2. Different curves correspond
to different number of nodes: N = 100 (blue), 400 (green), 1600 (red); curves
marked without/with circles correspond to exclusion/inclusion of periodic bound-
ary conditions (pbc).

for all i ∈ N it holds that Pi = P = 〈P 〉N . The chosen rather small sample size
produces already more than sufficient statistical convergence and keeps statistical
error bars to such small values, that those will not be shown for this and the
following figures. For a path-loss exponent set equal to α = 2 a percolation
threshold behaviour around P crit ≈ 4.5P norm is observed: for P � P crit the
average relative giant component is close to zero, whereas for P � P crit it is
almost equal to one. The sharpness of the threshold depends on the number of
nodes in N ; with increasing N the transition becomes sharper.

For the determination of the exact threshold position the limit N →∞ would be
needed. To partially account for this, the relative giant component has also been
determined from small and medium N simulations with periodic boundary condi-
tions. Results are also shown in Figure 2.1. The percolation transition becomes
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2 Continuum percolation approach to network connectivity

sharper and moves a little to the left once compared with the previous results, but
still no full convergence for the employed increasing N values is obtained. Since
for realistic ad hoc networks the limit N → ∞ is unrealistic, this matter is not
pursued further. Within this chapter the focus is on network realisations with
N = 1600 nodes. For wireless ad hoc networks this is already a high bound.

The critical power P crit ≈ 4.5P norm, obtained by setting the path-loss exponent
equal to α = 2, can be given a more illustrative interpretation: the factor 4.5
reflects the average number of neighbouring nodes, which is also denoted as the
average node degree 〈k〉. In the constant-P case the transmission ranges of all
nodes of N are equal. The nodes contained in the circular disc around node i are
thus neighbours of i. One comes up with 〈k〉 = (π(Rcrit)2)N , where N represents
the density of nodes in the unit square. In analogy to P crit ≈ 4.5P norm it follows
that (Rcrit)2 ≈ 4.5(Rnorm)2. This allows to formulate the average node degree
in terms of the normalised radius 〈k〉 ≈ 4.5π(Rnorm)2N = 4.5 employing the
normalisation condition given in Section 1.4. Note, that due to finite-size effects
and the usage of no periodic boundary conditions the actually sampled critical
node degree is a little smaller than the asymptotic value kcrit = 4.53, which is
stated for example in [34, 53].

This short derivation demonstrates that other than in terms of P crit it is also
convenient to characterise the percolation phase transition in terms of Rcrit or
kcrit. Once choosing other path-loss exponents α 6= 2, the former will change
according to P crit(α 6=2) = (Rcrit)α−2P crit(α=2), whereas Rcrit or kcrit remain as
before. Within this chapter the transmission power of a node is given in units
of P norm because of the nice correspondence with the average node degree 〈k〉
given a path-loss exponent α = 2. For the following chapters of this thesis it
will be switched to a characterisation of a node’s transmission power via the
expected number of neighbours kconstP. For any α the condition kconstP

i = kconstP =
π(Rij)

2N = π(Pi)
2/αN fixes the transmission power of node i such that on average

kconstP neighbouring nodes can be reached via direct bidirectional links from i.
Next, spatial point patterns other than random homogeneous are discussed.

Figure 2.2 compares the relative average giant component 〈G〉 as a function of
transmission power obtained for random multifractal and Manhattan spatial point
patterns with the random homogeneous case; consult again Figure 1.1. A sam-
ple of 500 geometric graphs generated with random homogeneous spatial point
patterns of 1600 nodes has been used. Evidently for small 〈P 〉 the relative giant
component is larger for the multifractal than for the homogeneous patterns, but
for the convergence of the relative giant component towards one a much larger
〈P 〉 is needed. Due to the hierarchical clustering, subclusters of points are easily
formed at small 〈P 〉 since only a small transmission range is needed to connect the
corresponding nodes. However, in order to connect the various subclusters either
directly to each other or via isolated nodes lying inbetween it needs a rather large
transmission power. Another consequence of the pronounced clustering is that the

18



2.2 Continuum percolation for different power assignments

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

gi
an

t c
om

po
ne

nt
 <

G
>

power <P>/Pnorm

homogeneous
multifractal
Manhattan

Figure 2.2: Giant component for different point patterns
Average relative giant component 〈G〉 as a function of transmission power
〈P 〉/P norm upon using the constant-P rule. The number of nodes has been fixed
to N = 1600 and the path-loss exponent has been set to α = 2. Different curves
correspond to different random spatial point patterns: homogeneous (red), mul-
tifractal (green) with parameters ω = 0.4 and j = 5, and Manhattan (blue) with
parameters Nx = Ny = 7. A sample of 500 geometric graphs has been used for
each case.

rather sharp percolation threshold observed for homogeneous point patterns blurs
more the larger the splitting parameter ω characterising the multifractal point
patterns is chosen.

Also for the Manhattan point patterns the relative giant component increases
faster for small transmission powers than for the homogeneous point patterns. The
reason is that the average nearest-point distance is smaller for the random points
confined to the one-dimensional Manhattan streets. The Manhattan threshold for
the relative giant component is relatively sharp and comes at a transmission power
value, which is somewhat smaller than for random homogeneous point patterns.

It is instructive to map the continuous percolation based on Manhattan point
patterns onto the well-known square-lattice bond percolation [19]. Two nodes
are assumed to lie on a one-dimensional straight line and to have a distance
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2 Continuum percolation approach to network connectivity

l = 1/Nx = 1/Ny corresponding to the distance of two successive Manhattan
street crossings. They can only communicate with each other, if inbetween nodes
i come with successive distances r smaller than their transmission range R = Rij;
otherwise the occurring void is too large to be bridged. For a one-dimensional
Poissonian point pattern with density λ = N/(Nx + Ny) the distance r of two
consecutive nodes is exponentially distributed according to p(r) = λ exp (−λr).
This allows to estimate the probability for the occurrence of at least one too large
void between the two picked nodes with distance l. The expression is

p(void > R) =

m∑

j=1

(−λ)j−1

(j − 1)!
(l − jR)j−1

[
1 +

λ

j
(l − jR)

]
e−jλR , (2.1)

where m = bl/Rc denotes the largest integer smaller than or equal to l/R. A
derivation of this formula is given for example in [51]. Setting the path-loss ex-
ponent to α = 2 and according to equation (1.2) converting the threshold power
P ≈ 4P norm into R, one arrives at a value p(void>R) = 0.47, which almost
matches the critical bond probability pbond = 0.50 of bond percolation on a square
lattice [19].

In addition to the average relative giant component the curve for the one-
connectivity is shown in Figure 2.3. The quantities are given as a functions of
〈P 〉 obtained from a sample of 500 geometric graphs generated with random ho-
mogeneous spatial point patterns of 1600 nodes and the constant-P rule. The
one-connectivity also reveals a threshold behaviour, which sets in once the rela-
tive giant component has approached one. It is intuitive that at this point the
probability for N giant = N starts to deviate from zero. The relative factor of the
respective threshold positions is about 2.3 compared to the average relative giant
component.

A brief comment is in order here. The percolation threshold for the giant
component does not depend on the size of a network since it is defined as the
point where the probability to find an infinite cluster within an infinite quantity of
nodesN∞ starts to deviate from zero. It does not imply that all nodes inN∞ have
to be part of that giant component. But this is what one-connectivity requires.
As shown in [50] this quantity explicitly depends on the size of the network,
in particular it scales with (logN). Thus a threshold in the above mentioned
context does only make sense for a given network size N . As already stated the
investigations presented here are limited to networks of size up to 1600 nodes
which is a reasonable bound for ad hoc communication networks.

For completeness the probabilities for pseudo-k connectivity with k = 2 and
3 are also depicted in Figure 2.3. Of course, their threshold is shifted to even
larger P when compared to the pseudo-one threshold. A part of Figure 2.6 shows
the probability for one-connectivity for random multifractal and Manhattan point
patterns. Whereas the Manhattan curve is close to the homogeneous curve, the
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Figure 2.3: One-connectivity and pseudo k-connectivity
One-connectivity and pseudo k-connectivity as a function of transmission power
〈P 〉/P norm upon using the constant-P rule. The number of nodes for the simulated
500 random homogeneous point patterns has been fixed to N = 1600 and the
path-loss exponent has been set to α = 2. Different curves correspond to the
one-connectivity (pink), k = 2 (green), k = 3 (blue); for comparison the average
relative giant component is shown as the red curve.

onset for a non-vanishing probability in case of the multifractal point patterns is
shifted to extremely large values of the transmission power. This is due to the
inhomogeneous spatial clustering and demonstrates that the constant-P rule has
serious drawbacks in such an environment.

In addition to these disadvantages within more complex surroundings it has to
be mentioned again that the constant-P rule is by construction an artificial as
well as unrealistic rule. It would require all nodes either to be designed for only
the same single-valued transmission power operation or, given already network
connectivity, to carry out fast synchronisation; of course, also an outside provider
could adjust all node transmission powers to one single value, but this would give
up the advocated philosophy of self-organising ad hoc networks. Nevertheless, the
constant-P rule is a valuable and well-studied reference [46].
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Figure 2.4: Giant component for the iid transmission power rule
Average relative giant 〈G〉 component as a function of the average transmission
power 〈P 〉/P norm upon using the iid transmission power rule for the bimodal
distribution of equation (1.3). The number of nodes for each of the used 500
random homogeneous point patterns has been fixed to N = 1600 and the path-
loss exponent has been set to α = 2. Different curves correspond to different
parameter choices: β1 or β2 = 0.0 (red, constant-P rule), β1,β2 = 0.1,0.1 (green),
0.3,0.1 (blue), 0.3,0.3 (pink).

2.2.2 iid transmission power

The idea behind an iid transmission power rule like the one presented in Section 1.4
is to add a number of long-range connections to the network that might increase
connectivity and lead to shorter network diameters D.

Figure 2.4 illustrates simulation results obtained with random homogeneous
point patterns. The average relative giant component 〈G〉 as a function of the
average transmission power 〈P 〉 is shown for some combinations of β1 and β2 of
the bimodal distribution in (1.3). All settings result in a shift of the percolation
threshold to larger 〈P 〉 values when compared to the outcome of the constant-P
rule. The randomness and spatial decorrelation of the long-range links introduced
by the iid-P link rule does not allow for a shift of the percolation threshold towards
smaller 〈P 〉 values. A mean-field approach for the average node degree 〈k〉 confirms
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2.2 Continuum percolation for different power assignments

this reasoning. According to equation (1.3) two values for the transmission power
are possible: P low = 〈P 〉(1 − β1) with probability p(P low) = β2/(β1 + β2) and
P high = 〈P 〉(1 + β2) with probability p(P high) = β1/(β1 + β2). A node i with low
transmission power Pi = P low has bidirectional links to all other nodes placed
within the circular disc characterised by its transmission range Rlow

ij = (P low)1/2

given α = 2. Its node degree can then be described by the product of its disc area
and the total density of nodes in the unit square 〈k〉low = π(Rlow

ij )2N = πN〈P 〉(1−
β1). A node i with high transmission power Pi = P high has bidirectional links to all
nodes within an inner circular disc characterised by the lower transmission range
Rlow
ij of the replying node. A node degree for this inner surrounding can be given

in a similar manner than above: 〈kinner〉high = π(Rlow
ij )2N = πN〈P 〉(1− β1). Any

node j placed in an annulus around i characterised by an inner radius Rlow
ij and

a outer radius Rhigh
ij = (P high)1/2 can only set up bidirectional links with i if Pj =

P high, too. An estimate for the number of long-range neighbours is thus given by
〈kouter〉high = p(P high)π[(Rhigh

ij )2− (Rlow
ij )2]N = p(P high)πN〈P 〉[(1 +β2)− (1−β1)].

The average node degree 〈k〉 can then be written as:

〈k〉bimodal = p(P low)〈k〉low + p(P high)[〈kinner〉high + 〈kouter〉high]

= πN〈P 〉
(

1− β1β2

β1 + β2

)
(2.2)

For all β1 > 0 and β2 > 0 the node degree 〈k〉bimodal for the iid transmission
power assignment according to the bimodal distribution (1.3) is smaller than in
the constant-P case with 〈k〉constP = πN〈P 〉. In terms of continuum percolation
it is this reduction of the average number of links that causes the shift of the
percolation threshold. The limited number of long-range connections can not
compensate this shortcoming.

Without showing it shall be remarked that similar results of the simulations are
obtained for other point patterns of multifractal or Manhattan type. Also other
iid transmission power distributions like a lognormal distribution did not show
better performance.

As already mentioned the uncorrelated introduction of long-range links is not
sufficient for a better network connectivity. They rather have to be established in
areas with a lower density of nodes and to connect separated clusters. This will
be achieved by the minimum node degree rule as presented in the next section.

2.2.3 Minimum node degree

The simulation results obtained with the local minimum node degree rule are il-
lustrated in Figures 2.5 and 2.6 and compared to the respective outcomes of the
constant-P rule. For geometric graphs based on random homogeneous spatial
point patterns the threshold of the average giant component 〈G〉 is reduced by
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2 Continuum percolation approach to network connectivity

about a factor of 1.45; for the probability for one-connectivity the threshold reduc-
tion factor around 2.05 is even slightly larger. Note that for kmin = 3 the relative
giant component is already very close to one; once kmin ≥ 6 the probability for
one-connectivity becomes one almost surely for networks of up to at least 1600
nodes. It is worth mentioning that for a wide spectrum of given values for the
minimum degree kmin it holds 〈k〉 = a kmin with a ≈ 1.2 . . . 1.4.

For geometric graphs based on random multifractal spatial point patterns the
local minimum node degree rule beats the constant-P rule even more impressively.
Whereas for the constant-P rule the giant component threshold is very blurred,
the local rule transforms it into a sharp threshold, which almost exactly coincides
with the respective threshold obtained for the previously discussed random homo-
geneous point patterns. Due to the strong spatial clustering the artificial constant-
P rule leads to a highly suppressed one-connectivity yield; for the parameters used
for Figure 2.6 the onset for non-vanishing one-connectivity is already at a rather
large transmission power around 〈P 〉/P norm ≈ 13, but it needs an even much
larger 〈P 〉 for this probability to come close to one. The local minimum degree
rule, on the other side, perfectly adapts to the new environment, compensating
the strong spatial clustering introduced by the heterogeneous spatial point pat-
terns and pushing the one-connectivity threshold down to 〈P 〉/P norm ≈ 6, nearly
matching the respective homogeneous point pattern threshold; with kmin ≈ 7,
which is equivalent to 〈P 〉/P norm ≈ 10, the probability for one-connectivity is
practically one.

In case of the geometric graphs based on random Manhattan spatial point pat-
terns and in comparison with the artificial constant-P rule, the local minimum
node degree rule reduces the threshold of the average giant component as well as
of the one-connectivity by about a factor of 1.7. The magnitude of reduction is
comparable to the values stated for random homogeneous point patterns. For the
one-connectivity probability to become almost one, a value of at least kmin = 10
is needed for the model parameters stated in Figure 2.6.

2.3 Transmission power and node degree distribution

The results for the node degree and transmission power distributions from the
minimum node degree rule compared to their constant-P counterparts will be
presented. The particular focus is on random homogeneous spatial point pat-
terns. The minimum degree is chosen to be kmin = 6 in order to guarantee one-
connectivity almost surely; consult again Figure 2.6. The node degree distribution
p(k), which reflects the probability for a node to have k neighbours, is shown in
the upper graph of Figure 2.7. The number of nodes has been fixed to N = 1600
and the path-loss exponent has been set to α = 2. The values are sampled over
500 network realisations. By construction, p(k) = 0 for k < kmin. It comes with
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Figure 2.5: Giant component for the minimum node degree rule
Average relative giant component 〈G〉 as a function of average transmission power
〈P 〉/P norm upon using the local minimum node degree rule (curves with circles)
and the constant-P rule (curves without circles, identical to curves of Figure 2.2).
The number of nodes has been fixed to N = 1600 and the path-loss exponent to
α = 2. Different line colours correspond to different random spatial point patterns:
homogeneous (red), multifractal (green) with ω = 0.4 and j = 5, Manhattan
(blue) with Nx = Ny = 7; sampled over 500 graph realisations. From the left to
the right the circles on each minimum node degree rule curve stand for kmin = 2−7
(homogeneous, multifractal) and 2−9 (Manhattan).
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Figure 2.6: One-connectivity for the minimum node degree rule
One-connectivity as a function of average transmission power 〈P 〉/P norm for the
minimum node degree rule (curves with circles) and the constant-P rule (curves
without circles). Parameters are N = 1600 and α = 2. Different line colours
correspond to different random spatial point patterns: homogeneous (red), mul-
tifractal (green) with ω = 0.4 and j = 5, Manhattan (blue) with Nx = Ny = 7;
each sampled over 500 graph realisations. From the left to the right the circles on
each minimum node degree rule curve stand for kmin = 3−6 (homogeneous), 3−7
(multifractal) and 5−10 (Manhattan).
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a peak at k = kmin and falls off sharply for k > kmin. Upon changing from dis-
crete to continuous k ≥ kmin, the distribution can be fitted as the superposition
p(k) = aδ(k−kmin)+bN(k;µGauss, σ) of a δ-function, placed at the minimum node
degree, and a normalised Gaussian with shift µGauss and width σ. The parameters
used for the fit in Figure 2.7 are a = 0.14, b = 1.49, µGauss = 5.93 and σ = 2.39.

For comparison the much broader node degree distribution resulting from the
constant-P rule is shown in the upper graph of Figure 2.7. The setting Pi/P

norm =
〈P 〉/P norm = 20 is necessary to guarantee one-connectivity almost surely as stated
in Figure 2.6. A geometric argumentation is helpful in order to understand the
distribution. For simplicity the path-loss exponent is set to α = 2. Picking one
node i ∈ N , the probability to find ki other nodes inside its circular disc with
radius Rij = P

1/2
i = P 1/2 is equal to the binomial distribution [34]

p(k) =

(
N − 1

k

)
qk(1− q)N−1−k ≈ (λk/k!)e−λ (2.3)

where q = πR2
ij is the fraction of the disc area to the unit square. For N large

and q small, p(k) becomes a Poissonian with mean 〈k〉 = λ = q(N − 1). The
small deviations of the generic distribution in Figure 2.7 to the Poissonian are
due to finite-size effects, that on average nodes close to the boundary experience
a degree less than λ. The generic distribution can be well fitted with a normalised
Gaussian; parameters used in the upper graph of Figure 2.7 are µ = 18.98 and
σ = 4.92.

The transmission power distribution in case of the constant-P rule is simply
a δ-function at Pi/P

norm = 20 as illustrated in the lower graph of Figure 2.7.
Its position naturally represents an approximate upper bound for transmission
power values obtained from the minimum node degree rule. For the distribution
resulting from the minimum node degree rule an analytic estimate can be given.
The path-loss exponent is again set to α = 2. As mentioned above the degree
distribution of a node, not too close to a boundary, is given by the Poissonian
p(k) = (qN)ke−qN/k!, with q = (P/P norm)π(Rnorm)2 = (P/P norm)/N representing
the area covered by the node’s transmission radius relative to the unit square.
Here, the transmission power P is kept fixed and the degree k is the discrete
random variable. Another look on the upper graph of Figure 2.7 reveals, that
the very narrow degree distribution resulting from the minimum node degree rule
can be crudely approximated as p(k) ≈ δ(k − k0) with k0 = 〈k〉 = 7.36. From
that perspective the node degree k is now kept fixed within the above Poissonian
and the transmission power is considered as the continuous random variable. This
leads to the transmission power distribution

p(P/P norm) ∼ (P/P norm)k0 exp (−P/P norm) . (2.4)

It corresponds to a Gamma distribution p(x; a, b) = xa−1e−x/b/(baΓ(a)) with x =
P/P norm and a = k0 + 1 ≈ 8.36, b = 1. The actual best fit to the sampled
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Figure 2.7: Node degree and transmission power distributions
Node degree and transmission power distributions obtained from the minimum
degree and the constant-P rule for random homogeneous point patterns; sampled
over 500 graph realisations. The number of nodes has been fixed to N = 1600
and the path-loss exponent has been set to α = 2. Details about the fitted
distributions are given in the main text.
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2.4 Summary

distribution, shown in the lower graph of Figure 2.7 , yields the parameters a =
7.74, b = 1.01 and more or less confirms the given estimate.

A similar discussion for point patterns other than random homogeneous is given
in detail in [21].

2.4 Summary

Connectivity represents an important issue for wireless mobile ad hoc communi-
cation networks. In a self-organising manner, the participating ad hoc nodes have
to tune their transmission powers to establish direct one-hop communication links
to their spatial neighbours. Furthermore all other nodes should be reachable via
multihop routes. In analogy to two-dimensional continuum percolation a perco-
lation threshold for the transmission power exists in the constant-P case above
which the connectivity of a network can be guaranteed. However, the percolation
threshold does show a sensitive dependence on the specific spatial patterning of
the ad hoc nodes. Different classes of uncorrelated and correlated random point
patterns, like homogeneous, multifractal or Manhattan-like distributions, make a
significant difference. The constant-P rule as well as the iid transmission power
rule are not flexible enough to adapt to local spatial inhomogeneities. A local
generalisation of these rules leads to the minimum node degree rule that can
be viewed as a first important step towards a self-organising connected network
structure. It requires each ad hoc node to be connected to a minimum number
of closest neighbours. This distributed rule is able to counterbalance local spa-
tial inhomogeneities occurring in the different point patterns. As a function of
average transmission power the percolation thresholds associated to the various
considered classes of random point patterns almost collapse onto each other and
are tremendously reduced, when compared to the outcomes with the global rules.

For the networks used in the following chapters on data traffic connectivity is
a prerequisite. To be on the safe side all networks of the constant-P type are
generated with P = 24P norm for a path-loss exponent α = 2 which translates
into kconstP = 24 in the general case. For the networks of minimum degree type
kmin = 8 is required.
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3 Generic data traffic

For many networks, natural or artificial, the understanding of the functional prop-
erties requires the study of dynamical processes on the network graph. The prin-
ciples of the dynamical rules, the properties of the network constituents as well
as the topology of the network graph have an impact on the dynamical behaviour
of the system [54, 55]. It is for that reason why dynamical processes in the form
of exchange of data packets have to be studied for wireless ad hoc communi-
cation networks. In the previous chapter possible topologies of ad hoc network
graphs have been proposed, fulfilling the prerequisite of connectivity. Based on
these topologies the question of this chapter is how these networks behave under
conditions of data traffic. In particular it will be asked how much data can be
transmitted in a given network, what are suitable measures for this critical load
and which dynamical properties arise on a global as well as a local scale. One can
also test the influences of different setups of data generation as well as the impact
of the topology of the network graph on the dynamical behaviour.

These and other phenomena can be best studied by setting up an appropriate
model that includes the basic key points of a real world communication network
with data traffic. Such a model allows the prediction of particular features of net-
work data traffic and the verification of analytically obtained results. As a suitable
reference throughout this chapter the constant-P topology with kconstP = 24 is em-
ployed to study relevant dynamical properties of network traffic. Since all nodes
have the same transmission power no unidirectional links exist in the realisations
of the network graph. All networks are exclusively generated on random homoge-
neous point patterns. An introduction to the principles of network traffic and the
specific setup of the model will be given in Section 3.1. Section 3.2 looks on global
observables of the generic data traffic in such networks whereas Section 3.3 studies
properties of selected nodes. A detailed analytic approach to describe the outflux
of packets from a node is given in Section 3.4. A brief discussion of the behaviour
of networks with minimum node degree rule for connectivity under generic data
traffic follows in Section 3.5 whereas Section 3.6 focuses on the impact of special
user behaviour on the dynamical properties of network traffic. A summary in
Section 3.7 concludes the chapter.
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3 Generic data traffic

3.1 Principles of network traffic

3.1.1 A model of generic data traffic

Retaining the conventions from Chapter 1 mobility of the nodes is not taken into
account, instead an ensemble of static point patterns is considered. In that respect
it is consistent not to allow the nodes to change their transmission power with
time. In this way one ensures that for a given static point pattern the network
graph stays the same for the whole time of data traffic execution.

To completely reproduce a real-world data traffic one would have to implement
engineering-like protocols which by use of control messages could precisely manage
all traffic actions. Since the research interest of this thesis is more focused on the
overall behaviour and statistical properties of the actual data transfer a simplified
generic model will be employed. The model is based on discrete time steps. All
nodes within the network are assumed to start each time step simultaneously.
At the very beginning of a time step new packets can be generated. After a
short contention phase in which the data network organises the following packet
transmissions the remaining period is reserved for the actual data transfer.

Packet creation In the simplest version of the model one single new data packet
of fixed size is created at each node i ∈ N with a probability µi = µ < 1. This
probability is also referred to as the packet creation rate whereas the product
µ · N corresponds to the mean of the total number of newly created packets in
one time step within the network. For the simulation of specific user behaviour
the generation of more than one packet at a certain node is employed. This will
be discussed in more detail in Section 3.6. If a packet is created at a certain node
i a destination is randomly chosen among all other nodes {N \ i}. Labeled with
the time of generation and the final destination node the packet is put at the end
of the buffer queue of the generating node. All nodes are assumed to have infinite
capacity. Nodes, for which a new packet has been created, are blocked for the
remainder of this time step.

Routing For all data traffic simulations employed in this chapter data packets
are forwarded along the shortest path σi,f in the sense of Section 1.1 from the
generating node i to the final receiver f [8, 56].

The shortest paths σi,f within a given network realisation G are obtained using
Dijkstra’s algorithm [57]. The algorithm solves the shortest path problem for a
connected graph G = (N ,Lbidir) which has non-negative link weights. The cost of
a path between two nodes is the sum of costs of the link weights in that path. To
find shortest paths in the hop metric all weights are initialised to wi,j = 1. The
cost of a path is thus equal to the distance. The algorithm works by constructing
a subgraph H of G starting from an initial node i such that the distance of any
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node j ∈ H from i is known to be a minimum within G. Initially H is simply the
single node i, and the distance of i from itself is known to be zero. Links (and
corresponding nodes) are added to H at each stage by (a) identifying all the links
LH−G = j1 ↔ j2 such that j1 is in H and j2 is in {G \ H}, and then (b) choosing
the link j∗1 ↔ j∗2 which gives the minimum distance from i to any j∗2 among all
links LH−G. For each newly added node j∗2 its predecessor node j∗1 is stored which
latter allows to backtrace each shortest path from any j towards i. The algorithm
terminates once H = G. Since the network graph G is static the information about
shortest paths obtained once remains valid during the data traffic simulation.

Each node of i ∈ N has full access to the information about the shortest paths
to all other nodes f ∈ N \ i. In that sense each node knows to which of its
neighbouring nodes it has to send a packet from its buffer queue in order to reach
a given final recipient. Thus for every node i a routing table

F i
f = S (3.1)

is supplied that for every final receiver f ∈ {N \i} provides a list S of bidirectional
neighbours of i that minimises the hop-distance di,f towards f . This routing
scheme is referred to as full table routing [8].

If more than one shortest path to the final receiver f exist that split at i then
more than one possible next hop neighbours are listed in S. For all routing decision
within this chapter path degeneracy between two nodes i and f will be completely
suppressed by randomly choosing one of the shortest paths between i and f . This
choice is then once and forever kept fixed, not only for one particular execution
of the end-to-end route from i to j but for all future communications between
the same original sender and the same final receiver. All routes in the network
between any two nodes are thus completely deterministic.

Medium access control (mac) During the short contention phase at the be-
ginning of each time step, the non-blocked nodes (that have not generated data
packets in that particular time step) compete for gaining sender status. A node
i out of this set of nodes with a non-zero buffer is randomly picked first and
obtains the permission to transmit its first packet in the buffer queue to the re-
spective neighbouring node defined by F i

f = S = j. Both, the sending node i
as well as receiving node j ∈ Ni mac-block their respective outgoing neighbours
n ∈ N out

i ∪ N out
j for the remainder of this time step. Then another node with

non-zero buffer that has not been blocked so far is chosen at random and tries
to attempt the permission for the transmission of its first-in-line packet. If the
intended receiver has already been blocked before, the node tests its second-in-line
packet and so on, until either the first idle recipient is found or the end of its buffer
queue is reached. This strategy is denoted as first-in-first-possible-out (fifpo). If
this node succeeds to gain sending permission for a packet, it then mac-blocks
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again its remaining outgoing neighbours as well as those of the receiving node.
This iteration is repeated until no free one-hop transmission is left.

In case of existing unidirectional links, which occur for a heterogeneous dis-
tribution of transmission power, it might occur that an unidirected outgoing link
associated to the latest mac-operation blocks a node, which within the contention
phase of this time step has already gained sender or receiver status in a previously
approved one-hop transmission. For such cases, the previously assigned sender and
receiver are blocked again. Furthermore, their outgoing neighbourhoods remain
blocked and are not freed.

Packet transmission After the contention phase at the beginning of the time
step all nodes with sending permission now submit their selected packet and re-
move it from their respective buffer queue. The receiving nodes either add the
incoming packet to the end of their buffer queue or, if they are the final recipient,
destroy the packet. This concludes the actions taken for one time step and the
whole process is repeated for the next time step. From a single-node perspective,
a node can only perform a single operation per time step: either it creates a new
packet, it sends a packet, it receives a packet from a neighbour, it is blocked by a
neighbour or it remains idle.

It should be pointed out that the simple blocking of outgoing neighbours via
medium access control (mac) only reduces interference, but does not eliminate
it completely. Interference might occur due to the cumulative strength of many,
although distant one-hop transmissions taking place at the same time [58]. Such
effects are not taken into account in the present data traffic simulation.

3.1.2 Inbetweenness measures

Inbetweenness centrality is a classical graph theoretical measure that counts the
number of shortest paths via a given node [59, 33]. Since data traffic within the
above stated model is based on shortest routes this measure becomes an important
tool for the understanding of different phenomena within this chapter.

The so-called node inbetweenness employed in this thesis is given by

Bnode
i =

1

(N − 1)2

( ∑

k 6=f∈N\i

|σk,f(i)|
|σk,f |

)
(3.2)

where |σk,f | represents the total number of shortest paths between k and f and
|σk,f(i)| the number of shortest paths between k and f that passes i. The fraction
1/(N − 1)2 is due to a proper normalisation of the node inbetweenness Bnode

i ∈
[0, 1]. A total of N(N − 1) different end-to-end communications is possible. In
order to be counted in (3.2) node i can not act as receiver which reduces the
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Figure 3.1: Visualisation of the inbetweenness
The colour of the nodes/links correspond to the node/link inbetweenness. This is
a realisation of a network graph of 100 nodes, power assignment with constant-P
rule (kconstP = 24). For reasons of reference this particular spatial distribution
of the nodes for a random homogeneous point pattern will be called constant-P
reference network.

summation by (N − 1). Thus N(N − 1)− (N − 1) = (N − 1)2 is the number of
possible end-to-end communications summed over in equation (3.2).

So far the node inbetweenness defined in (3.2) is a purely graph theoretical
measure. But the generic data traffic model uses shortest paths for the packet
forwarding as explained in the previous subsection. In that respect the node
inbetweenness is also a measure of how frequently a node will be used for packet
transfer. For a certain route execution from node j to node f only nodes shall
raise their inbetweenness counter that do really store the particular data packets
in their respective buffer queue. This is not the case for the final receiving nodes
since it destroys the arriving packet. This is the reason for the exclusion of the
final node in the counting in (3.2).

For the calculation of the node inbetweenness an all-pairs shortest path algo-
rithm is used similar to that described in [60]. The algorithm starts out from node
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i with distance assignment d = 0, all neighbours j ∈ Ni get distance d = 1. For
each node j with distance d all of its neighbours j2 are updated as follows. If j2 has
not already been assigned a distance, it now gets distance d+ 1 and j is identified
as j2‘s predecessor. If j2 has already distance d+ 1 then no further assignment is
necessary. Simply j is added to the list of predecessors. If j2’s distance is smaller
then d+1 nothing happens at all. Finally the distance assignment is started again
with the neighbours of j2 with distance d ← d + 1 and so on until the highest
distance is reached.

The sum rule

N [(N − 1)2〈Bnode
i 〉] = N(N − 1)D

(N − 1)〈Bnode
i 〉 = D

(3.3)

relates the average node inbetweenness to the diameter of the network D. The
square bracket on the left side of (3.3) represents the average number of shortest
paths via one node of a network with size N .

Since the definition of the node inbetweenness Bnode
i in (3.2) counts degenerate

shortest paths in a weighted fashion it is not fully consistent with the actual data
traffic. In the traffic model one predefined shortest path σ∗i,f is always superior to
other degenerate versions. This causes the nodes along σ∗i,f to be frequented more
often. Due to the randomness in the selection of the σ∗i,f the resulting differences
are expected to be negligible.

In complete analogy to the definition of the node inbetweenness Bnode
i in (3.2)

a link inbetweenness Blink
i,j can be defined.

Blink
i,j =

1

N(N − 1)

( ∑

k 6=f∈N

|σk,f(i, k)|
|σk,f |

)
(3.4)

It is a normalised measure of the number of shortest paths passing a link be-
tween the two neighbouring nodes i and j. Since there are no restrictions on
the receiving node, this measure is normalised by the total number of end-to-end
communications N(N − 1).

For visualisation, the nodes of a geometric graph with 100 nodes and the
constant-P rule (kconstP = 24) are plotted in Figure 3.1. The colour of the nodes
and the links correspond to their inbetweenness. The nodes and links marked
with red have highest values of the corresponding inbetweenness measures. Due
to the congruence with the generic data traffic this illustration gives an impression
of how frequent various nodes are used to forward data packets along end-to-end
communications. For reasons of reference this particular spatial distribution of
the 100 nodes for a random homogeneous point pattern will be called constant-P
reference network. It is the preferably studied spatial arrangement of nodes within
this and the next chapter.
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3.2 Characterisation of data traffic I: global

Observables like the travelling time of a data packet and the maximum number
of packets to be served in one time step are typical for the characterisation of
data networks under traffic conditions. They allow for an understanding of the
systems behaviour as a whole. In contrast there are also observables characterising
the behaviour of a single node within a complex network. Although this section
focuses on the global observables of network traffic close connections to the single
node picture become obvious.

3.2.1 Throughput

In general one can distinguish between two regimes of data traffic: the sub- and the
supercritical phase. The characteristic feature of the supercritical phase is non-
ability of the system to serve all data packets that are generated in the network.
Above a critical packet creation rate µcrit that separates the two regimes certain
nodes receive more packets that they can process. This causes an accumulation of
packets in these buffer queues. The number of active packets in a network M(t)
counts all the data packets presently contained in the system:

M(t) =
∑

i∈N
ni(t) (3.5)

ni is the number of packets in the buffer queue of node i. In the supercritical data
traffic regime the average number of active packets within the network 〈M(t)〉∆t,
with ∆t referring to a temporal average, increases as a linear function of the
elapsed time. Figure 3.2 documents this linear behaviour, where generic data
traffic in a constant-P reference network (kconstP = 24) with 100 nodes was looked
at.

In contrast, in the subcritical phase with µ < µcrit the average number of
active packets in the network is finite and independent of time. A respective
simulation result is also contained in Figure 3.2. All data packets generated in the
subcritical regime will by transfered to their final receivers in finite time. The ratio
of finally transmitted packets to the number of generated packets is consequentially
equal to 1. In the transition to the supercritical regime this ratio decreases as
packets are accumulating the buffer queues of overloaded nodes. Figure 3.3 is a
typical representation. Data traffic was measured in 200 network realisations each
containing 100 nodes with the constant-P power assignment (kconstP = 24). Error
bars correspond to the variance of the sampling over the 200 network realisations.
The critical packet creation rate 〈µcrit〉 ≈ 0.0103 is characterised as the point
where the ratio of generated to finally received packets deviates from 1.

The end-to-end throughput Te2e is a measure of the capacity of a network. It is
defined as

Te2e = µcritN . (3.6)

37



3 Generic data traffic

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r o

f a
ct

iv
e 

pa
ck

et
s 

<M
(t

)>
∆t

time t

µ = 0.0095
µ = 0.0102

Figure 3.2: Sub- and supercritical regime
The number of active packets 〈M(t)〉∆t is shown for two different packet creation
rates µ = 0.0095 and µ = 0.0102 depending on the duration of the simulation run.
The data traffic simulation was performed on a constant-P reference network of
100 nodes with kconstP = 24. The linear dependence on time is a clear indication
of supercriticality for µ = 0.0102.

and represents the maximum number of packets that on average can be transmit-
ted to their final receiver in one time step without network overloading. In that
respect µcrit can be understood as a specific capacity of that network.

For a conceptual understanding of the end-to-end throughput Te2e a short ex-
periment of thought is set up. One might imagine a network in which each node
has sufficiently high transmission power to establish a direct bidirectional link to
every other node in the network. Such a network is referred to as fully connected.
Because any route i to j has distance dij = 1 the diameter D is consequently
equal to 1. The set of mac-blocked nodes during one one-hop transmission be-
tween i and j is given by N mac

ij = {(N out
i ∪ N out

j ) \ i, j} = {N \ i, j}. Since this
set of mac-blocked nodes spans all the remaining nodes of the network only one
transmission per time step is possible. On the other hand the transmitted packet
reaches its final receiver in one time step since D = 1. Thus for every generated
packet precisely one time step is needed in order to transmit and destroy it. This
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Figure 3.3: Transition from sub- to supercritical regime
The ratio of transmitted to generated packets is shown depending on the packet
creation rate µ for networks of 100 nodes. A critical packet creation rate
〈µcrit〉 ≈ 0.0103 can be obtained from the graph above, from which on more
packets are generated in the network than finally transmitted. The particular ra-
tios were obtained by checking 200 different network realisations with constant-P
rule (kconstP = 24) for 50, 000 time steps. Error bars correspond to the variance
of the sampling process.

simple restriction is only satisfied for µcrit = 1/N which yields for the end-to-end
throughput Te2e = 1. Note that this result is independent of the network size N .

As Figure 3.4 indicates, this is not the case for different network topologies. The
graphs are obtained by sampling the critical packet creation rate µcrit for networks
of different size over 100 realisations. The critical packet creation rate µcrit was
determined with a binary search algorithm using nested intervals for simulation
times of 10,000 time steps. At a critical system size N crit ≈ 110 the end-to-end
throughput for the constant-P topologies (kconstP = 24) exceeds the value Te2e = 1
for fully connected networks.

Focusing on the conflicting interests of an efficient routing with high throughput
and the impact of the mac protocol, Figure 3.4 provides another encouraging
result. The ambition of the nodes in N to reach a possibly large neighbourhood
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Figure 3.4: Throughput
The throughput for networks constructed with the constant-P rule (kconstP = 24)
and the minimum node degree rule (kmin = 8) depending on the network size N
is shown. The results are obtained by sampling over 100 network realisations.
Each simulation spanned 10,000 time steps. The determination of the critical
creation rate µcrit was done by employing a binary search algorithm. The error
bars correspond to the variance of the sampling process.

in order to minimise the number of one-hop transmission for upcoming data packet
is only beneficial for networks of size up to N crit, which depends on the specific
topology of the network graph. For networks larger than N crit the wide-ranging
mac-blocking of substantial parts of the network suppresses the possibility of
having more than one transmission in the same time step. It is precisely this
multitude of simultaneous but spatially separated transmissions on the shared
communication medium that favours networks that are not based on long ranging
links with their intensive mac-blocking.

A simple estimate allows to get an impression of the dependence of the end-
to-end throughput Te2e on the system size N for a connected (N giant = N ) but
not fully connected topology. With 〈|N mac

ij |〉 being the average number of blocked
nodes while transmitting one data packet from node i to its neighbouring node
j the ratio N/(2 + 〈|N mac

ij |〉) refers to the average number of maximum possible
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one packet transmissions in one time step. For a network with diameter D the
end-to-end throughput Te2e can be approximated as

Te2e =
1

D

N

(2 + 〈|N mac
ij |〉)

. (3.7)

This expression is consistent with the finding Te2e = 1 for fully connected networks,
since D = 1 and 〈|N mac

ij |〉 = N − 2. Employing the scaling behaviour D ∼
√
N

from Section 1.1 and assuming the average number of blocked nodes 〈|N mac|〉 to
be independent of the system size N the end-to-end throughput Te2e should also
scales like Te2e ∼ Nκ with κ = 0.5 [46]. This scaling behaviour could not be
verified for generic data traffic on topologies with constant-P as well as minimum
node degree power assignment. In [35] the throughput Te2e has been studied for
networks of up to 2000 nodes. Scaling exponents of κ = 0.38 for the constant-
P rule with kconstP = 24 and κ = 0.24 for the minimum node degree rule with
kmin = 8 have been measured. The inherent difficulty of the estimate in (3.7) is the
sole utilisation of average network properties. It does not take the local character
of criticality in network traffic into account. This will be resolved in Section 3.4
which allows a better reproduction of the actually observed scaling properties.

The crucial relation for every node i ∈ N to determine whether it is a sub- or
supercritical state can be reduced to the simple relation

µin
i 5 µout

i (3.8)

The left hand side of this equation represents the rate of incoming packets to node
i whereas the right hand side represents the rate of outgoing packets, given that
node i has at leats one packet in its buffer queue. It is obvious that the buffer
queue of a node i does not overflow and accumulate more and more data packets
as long as this equation holds. As long as all nodes fulfil this relation the system
is in the subcritical regime. The critical node is characterised as the first node
for which µin

i /µ
out
i ≥ 1 with increasing µ. This node will also be referred to as

the most sensible node. A sufficient graph theoretical description of µin
i and µout

i

would be a valuable tool in the analysis of different network topologies, since it
allows the graph theoretical determination of the critical load.

By use of the inbetweenness measure Bnode
i as introduced in (3.2) a graph theo-

retical description of the rate of incoming packets µin
i is possible. Per time step and

in a statistical uniform manner, µN new packets are introduced into the network.
Out of these new packets, on average the fraction (N − 1)2Bnode

i /N(N − 1) =
(N − 1)Bnode

i /N will hop via node i along their respective shortest end-to-end
communication path. Thus

µin
i = µN

(N − 1)Bnode
i

N
= µ(N − 1)Bnode

i =
1

〈tarrive
i 〉 (3.9)
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describes the average number of incoming packets to node i. The upper part of
Figure 3.14 illustrates this relation for a node out of a constant-P network with
kconstP = 24. The average interarrival time 〈tarrive

i 〉 of node i is defined as the
reciprocal of the influx µin

i . The interarrival time measures the time between two
successive arrivals of packets at node i. It will be studied in more detail in Section
3.3.1.

The outflux µout
i is in a similar fashion linked to the so called sending time

〈tsend
i 〉 defined as the average time interval between subsequent sending events,

given that node i has a non-zero buffer queue:

µout
i =

1

〈tsend
i 〉 (3.10)

A graph theoretical estimate of the outflux µout
i of a node proved to be a serious

challenge. Since an analytic approach requires a deeper understanding of the
single-node phenomena of network traffic the corresponding explanations will be
given later in the course of Section 3.3.

As function of the packet creation rate µ the curves for µin
i (µ) and µout

i (µ) of
every individual node i ∈ N intersect at µ = µcrit

i . The critical packet creation
rate of the network is given as

µcrit = min
i∈N

µcrit
i (3.11)

The estimate of this critical network load allows the determination of the through-
put according to equation (3.6).

3.2.2 Active packets and end-to-end time delay

The number of active packets M(t) within a network has already been defined
in equation (3.5) as the total number of data packets stored within all of the
network’s buffer queues at time step t. It is intuitive that this number is closely
connected to the network size, the packet creation rate, the routing decisions and
the topology of the network graph. As pointed out in Section 3.2.1 a clear sign
of a network being in a supercritical state is a linear dependence of the average
number of active packets 〈M(t)〉∆t on time, for reference consult again Figure 3.2.

The end-to-end time delay te2e of a packet is defined as the number of time
steps between the generation at the originating node and the destruction at the
final receiver. To reduce the high volatility of the end-to-end time delay measure
a temporal average 〈te2e(t)〉∆t over a short time interval ∆t prior to time step t
is used as a suitable observable of the network performance during a data traffic
simulation. Being in the subcritical regime with µ < µcrit the system reaches a
steady state, where the number of packets created per time step given by µN must
be equal to the number of packets delivered per unit time. Since the average time a
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packet spends in the network is 〈te2e(t)〉∆t, we can assume that 〈M(t)〉∆t/〈te2e(t)〉∆t
packets are delivered to their final destination per unit time yielding

〈M(t)〉∆t
〈te2e(t)〉∆t

= µN (3.12)

This relation is known in queueing theory as Little’s Law [8, 22, 61]. Little’s Law
could be verified for the above stated model of wireless ad hoc communication
networks. A visualisation is given in Figure 3.5. For a network of 100 nodes
with the constant-P rule (kconstP = 24) the number of active packets 〈M(t)〉∆t
averaged over ∆t = 100 time steps as well as the local average of the end-to-end
time delay 〈te2e(t)〉∆t over the same interval is shown for two different subcritical
packet creation rates. The correspondence of the curves is striking. Due to the fact
that with a system size of 100 nodes the critical packet creation rate is in the order
of µcrit = 0.01, the product µN in equation (3.12) evaluates to approximately 1
which leads to the observed correspondence in the order of magnitude of the two
curves.

The probability density function of the end-to-end time delay p(te2e) for all
packets generated in a generic data traffic simulation with 5·105 time steps is shown
in Figure 3.6 for different subcritical packet creation rates µ. The simulation was
performed on the so called constant-P reference network. This particular network
is shown in Figure 3.1 and consists of 100 nodes with constant-P power assignment
(kconstP = 24). For higher packet creation rates µ the probability distribution is
shifted such that there is a higher probability of having higher end-to-end time
delays. This is obvious because of the larger number of packets being present in
the network that might interact or obstruct each other.

In the log-lin plot of Figure 3.6 it seems promising to suspect a generalised
exponential probability density function

p(aE ,bE)(te2e) =
1

bE
e−(te2e−aE)/bE (3.13)

for lower packet creation rates. A fit of the probability distribution of the end-
to-end time delay at a packet creation rate of µ = 0.005 is provided by the green
line in in the upper graph of Figure 3.7, that matches the numerically obtained
values quite well. Fit parameters are aE = 1.509 and bE = 3.066. A fit with a
log-normal probability density function

p(µL ,σL)(te2e) =
1

σLte2e

√
2π

e−(ln te2e−µL)2/(2σ2
L) (3.14)

as suggested in [56] is less suited. It is also included in the upper graph of Figure
3.7; Parameters are µL = 1.305 and σL = 0.677.

The same investigation was repeated for a higher packet creation rate µ =
0.0095 that is much closer to the critical packet creation rate µcrit = 0.0101 of the
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Figure 3.5: Little’s Law
For a time interval of 10,000 time steps out of a longer simulation run on a
constant-P reference network with 100 nodes, constant-P rule (kconstP = 24), the
number of active packets 〈M(t)〉∆t and the end-to-end time delay 〈te2e(t)〉∆t is
shown. The averaging interval was set to ∆t = 100. Two different subcritical
packet creation rates µ = 0.008 and µ = 0.01 have been employed.

constant-P reference network. The result is shown in the lower graph of Figure
3.7. The fit with an exponential probability density function like in (3.13) fails
to provide an adequate description of the numerically obtained data. Fitting
parameters are aE = −0.669 and bE = 15.360. Here the fit with the log-normal
probability density function of 3.14 outperforms the exponential one, although in
the regime of shorter buffer queues the fit is not perfect. Parameters are µL =
2.504 and σL = 1.060.

A clear understanding of the log-normal behaviour of the probability distribu-
tion of the end-to-end time delay could not be given so far. Although Huberman
et al. in [62] suggests an explanation based on a sociological analysis of individual
decisions by using the internet, this is not applicable here since generation events
of data packets are independent of the actual system state. The log-normal be-
haviour of the probability distribution of the end-to-end time delay seems to be
an inherent feature of data traffic on communication networks [56, 62, 63]. The
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Figure 3.6: Probability distribution of the end-to-end time delay
The probability distribution of the end-to-end time delay p(te2e) for three different
subcritical packet creation rates µ = 0.005 , 0.008 , 0.0095 is shown. The generic
data traffic simulation of 5 · 105 time steps was performed on the constant-P
reference network that consists of 100 nodes with constant-P power assignment
(kconstP = 24).

above presented findings are persistent also for significant changes in the packet
generation of the generic data traffic model previously introduced. Such aspects
of particular user behaviour are discussed in Section 3.6.

3.3 Characterisation of data traffic II: single-node

So far only observables that describe the behaviour of the network as a whole
have been studied. But from the graph theoretical discussion of the end-to-end
throughput in Section 3.2.1 one already knows about the influence of certain nodes
on the overall behaviour of the network. In particular it is one single node that
marks the transition from a sub- to a supercritical data traffic regime. A better
understanding of a single-node behaviour may thus provide more insight into the
dynamics of the whole system.

As presented in the previous section wireless ad hoc communication networks
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Figure 3.7: Probability distribution of the end-to-end time delay (fitted)
The upper graph shows the probability distribution of the end-to-end time delay
te2e for a packet creation rate µ = 0.005 as well as a fit with an exponential and a
log-normal probability density function. The lower graph illustrates the same for
µ = 0.0095. A detailed explanation of the fits is provided in the text. Parameters
are the same as in Figure 3.7. The inset represent the corresponding graphs in a
log-log plot.
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are subject to congestion if the packet creation rate exceeds a certain value. Con-
gestion does not immediately take over the complete systems but starts out at one
single node. Knowing about the behaviour of nodes around the critical state may
help to develop strategies to reduce traffic via certain nodes that are objective to
congestion and thus keeping the system in a subcritical regime.

From the perspective of queueing theory [22, 61] it is interesting to find out
if classical concepts can be applied to wireless communication networks. A pos-
sible adaption may allow an analytic description and support a more detailed
understanding.

3.3.1 Interarrival and sending time

Among others the routing decisions and the global packet creation rate µ have
an impact on the number and time intervals of incoming and outgoing packets to
and from a given node. To make further statements about the behaviour of the
buffer queue one has to know more about these so called interarrival and sending
times, in particular if they follow certain probability distributions. For this thesis
the interarrival time tarrive

i of node i is defined as the time between two successive
arrivals of data packets that are put at the end of the buffer queue of i. Two
things should be remarked here: First, it does not matter if a packet is received
via transmission from a neighbouring node j ∈ Ni or if they are generated right
at node i as long as they are added to the buffer queue of i. Second, arriving
packets to node i with i being the final receiver are not counted because they are
not handed over to the buffer queue but are deleted from the network.

Figure 3.8 shows the probability distribution of the interarrival times for the
most sensible node of the constant-P reference network, introduced in Section
3.1.2, consisting of 100 nodes with constant-P power assignment (kconstP = 24) for
a subcritical packet creation rate µ = 0.008 < µcrit

ref = 0.0101. The generic data
traffic simulation covered 5 · 105 time steps. In the log-lin plot the exponential
behaviour of the probability distribution can easily be verified which is an indica-
tion that the arrival event possibly follows a Poissonian statistic. Because of the
discretised time a discrete representation is preferred. This suggests to describe
the probability density function in terms of a binomial probability distribution.

Regarding the arrival/non-arrival of packets as a Bernoulli trail a geometric
probability density function should be sufficient to describe the statistics [61].
Identifying the inverse of the mean interarrival time 1/〈tarrive

i 〉 = µin
i as the prob-

ability for a new data packet to arrive at i the probabiltity density function for
the arrivaltimes p(tarrive

i ) is given as

p(tarrive
i = t) = (1− µin

i )t−1µin
i (3.15)

This is a representation of a geometric probability density function. It supports
the idea that subsequent packet arrival events are completely independent.
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Figure 3.8: Probability distribution of the interarrival time
The probability distribution p(tarrive

i ) (red) for the most sensible node of the
constant-P reference network is shown in a log-lin plot. The network consists
of 100 nodes with constant-P power assignment (kconstP = 24). The generic
traffic simulation covered 5 · 105 time steps for a subcritical packet creation rate
µ = 0.008. Additionally a graphical representation of the geometric probability
distribution function (3.15) with µin

i = 0.099 is provided (blue) and a probabil-
ity distribution of the interarrival times reproduced by the single-node simulation
(green).

The corresponding graphical representation of equation (3.15) is also included
in Figure 3.8 (blue line) and verifies the shown approach. Note that the only input
for this analytical description is the rate of incoming packets µin

i = 1/〈tarrive
i 〉 to

node i. For the shown case µin
i = 0.099 was measured in the generic data traffic.

Without showing it should be remarked that higher packet creation rates cause
a shift in the probability distribution towards lower interarrival times. The expo-
nential behaviour is maintained.

A numerical investigation reveals that equation (3.15) is applicable for all nodes
i ∈ N . It is not restricted to the most sensible node.

The sending time tsend
i of node i is defined as the time between two successive

sending events from node i to any of its neighbouring nodes j ∈ Ni given that
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Figure 3.9: Probability distribution of the sending time p(tsend
i )

Parameter settings are the same as in Figure 3.8. In addition to the probability
distribution of the sending time p(tsend

i ) (red for µ = 0.008, pink for µ = 0.007,
light blue for µ = 0.006) the corresponding analytical curve in analogy to equation
(3.15) with µout

i = 0.241 (blue) and a probability distribution reproduced by the
single-node simulation (green) is included for the higher packet creation rate.

the buffer queue is not empty. This restriction incorporates the fact that only
nodes with non-zero buffer have a desire to send. In that respect the counter for
the sending time is reset either with the sending of a packet or with the arrival
of a packet to an empty buffer queue. Typical probability distributions for the
sending time p(tsend

i ) of the most sensible node of the constant-P reference network
at µ = 0.006, 0.007, 0.008 < µcrit

ref = 0.0101 are shown in Figure 3.9. The network
consists of 100 nodes with constant-P power assignment (P = 24P norm). The
generic data traffic simulation covered 5 · 105 time steps. A higher packet creation
rate µ causes a shift of the probability distribution towards larger sending times.

The same argumentation as for p(tarrive
i ) with the use of the outflux rate µout

i =
1/〈tsend

i 〉 instead of µin
i in equation (3.15) holds for the analytical description of

this graph. The corresponding fit (blue) with µout
i = 0.241 is included in Figure

3.9 for the higher packet creation rate µ = 0.008.

An extended discussion of the above stated results will be given in Section 3.3.3.
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Figure 3.10: Probability distribution of the buffer queue length
In addition to the probability distribution of the buffer queue length p(ni) (red)
at µ = 0.008 the corresponding analytical curve given by equation (3.20) with
µin
i = 0.099 and µout

i = 0.241 (blue) and a probability distribution reproduced by
the single-node simulation (green) is included. Parameter settings are the same
as in Figure 3.8.

3.3.2 Buffer queue length

The in- and outflux of data packets to a node i is directly connected to its buffer
content described by the number of packets ni stored in the particular buffer
queue, also referred to as buffer queue length. The probability distribution p(ni)
of the number of packets in i’s buffer queue is shown in Figure 3.10 for the most
sensible node of the constant-P reference network. 100 nodes with constant-P
power assignment (kconstP = 24) constitute the particular network graph. The
simulation run spans 5 · 105 time steps. The packet creation rate is set to µ =
0.008 < µcrit

ref = 0.0101.
In the log-lin plot in Figure 3.10 one observes a similar exponential behaviour for

the probability distribution of the buffer queue length p(ni) as for the distribution
of interarrival and sending times shown in Figures 3.8 and 3.9. For completeness
it should be mentioned that higher packet creation rates µ cause a shift in the
corresponding probability distribution towards larger buffer queue lengths. A
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graph theoretical understanding of the probability distribution can be aimed for
by using the above stated results.

One can express the static probability of a node i to have ni packets in its buffer
queue as a function of its possible previous states and the corresponding transition
probabilities, represented by the interarrival and sending rate µin

i and µout
i ,

p(ni, t+ 1) = µin
i p(ni − 1, t) + µout

i p(ni + 1, t) + (1− µin
i − µout

i )p(ni, t) (3.16)

which holds for ni > 0. Such an equation is known as a rate equation. Reducing
to the stationary limit p(ni, t+ 1) = p(ni, t) it can be rewritten as

(µin
i + µout

i )p(ni) = µin
i p(ni − 1) + µout

i p(ni + 1) (3.17)

In the special case ni = 0 the equation above reduces to

µin
i p(0) = µout

i p(1) (3.18)

due to the fact, that no packets can be removed from an empty queue. Employ-
ing this the recursive formulation in equation (3.17) can be transformed into an
expression for p(ni)

p(ni) =

(
µin
i

µout
i

)ni
p(0) (3.19)

Normalising this to 1 one comes up with a full description of the probability
density function for the length of the buffer queue

p(ni) =

(
µin
i

µout
i

)ni(
1− µin

i

µout
i

)
(3.20)

This probability density function is also shown in Figure 3.10 (blue line) only
taking µin

i = 1
〈tarrive
i 〉 = 0.099 and µout

i = 1
〈tsend
i 〉 = 0.241 for the most sensible node

at µ = 0.008 as its inputs.
The understanding of the probability density function of the buffer queue length

p(ni) allows an analytical treatment of the number of active packets of a network
M and the end-to-end time delay te2e. Using equation (3.20) one can calculate
the mean buffer queue length of node i:

〈ni〉 =

∞∑

ni=0

nip(ni) =

µin
i

µout
i

1− µin
i

µout
i

(3.21)

The mean number of active packets is now given in analogy to (3.5) as

〈M(t)〉 =
∑

i∈N
〈ni(t)〉 =

∑

i∈N

µin
i

µout
i

1− µin
i

µout
i

. (3.22)
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Employing equations (3.9) and (3.10) the ratio of in- and outflux can be expressed
as µin

i /µ
out
i = µ(N − 1)Bnode

i 〈tsend
i 〉.

One can now study two limiting cases of (3.22). For very small packet creation
rates µ→ 0 the sending time tsend

i → 1 since almost no other packets exist in the
network that could cause other transmissions and mac-block node i. The average
number of active packets thus becomes

lim
µ→0
〈M(t)〉 =

∑

i∈N

µin
i

µout
i

= µ(N − 1)
∑

i∈N
Bnode
i = µN D . (3.23)

For the last step the sum rule (3.3) was used. Applying Little’s Law (3.12) this
can be transformed into an expression for the end-to-end time delay

lim
µ→0
〈te2e〉 = D . (3.24)

This finding is intuitive since for small traffic load almost no interactions between
data packets occur. It is the diameter D of the network that determines the
average end-to-end time delay.

In the other case where µ→ µcrit the ratio µin
i /µ

out
i → 1− for the most sensible

node; see again Section 3.2.1 for reference. It is precisely this node that governs
the number of active packets since the denominator in the sum of equation (3.22)
goes to 0. Thus the sum breaks down and it follows

lim
µ→µcrit

〈M(t)〉 =
1

1− µin
i

µout
i

=
1

(N − 1)Bnode
i

[µcrit 〈tsend
i (µcrit)〉 − µ 〈tsend

i (µ)〉]−1 . (3.25)

Since 〈tsend
i (µ)〉 is limited by the number of neighbours of i that compete with it

for sending permission it holds

lim
µ→µcrit

〈M(t)〉 ∼ [µcrit − µ]−1 . (3.26)

The number of active packets goes to infinity for µ→ µcrit. The critical exponent
is ξ = −1 [64]. The same critical exponents ξ = −1 holds for the end-to-end time
delay which becomes obvious by applying Little’s Law (3.12).

3.3.3 Single-node-simulation

In order to verify the above drawn picture of a single-node behaviour within a
wireless ad hoc communication network a further simple simulation was set up
that allows to independently check the previously obtained results. The so called
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single-node-simulation is based on a Poissonian input and output of data packets to
a solitary existing node. Corresponding probabilities are pin = µin

i and pout = µout
i ,

respectively. An output can only be realised if at least one packet is present in
the buffer queue. Running this model in discretised time analogous to the generic
data traffic where only a packet arrives, departs or nothing happens at each time
step, it allows to gain equivalent data about the probability distributions of the
buffer queue length, the interarrival and sending times.

Interactions and correlations between parts and subparts of network play a sig-
nificant role in its specific dynamics. These correlations are completely neglected
in the single-node-simulation since only one solitary node exists in the artificial
environment. A study of similarities and differences with the generic data traffic
simulation allows to find out the limits of the simplified approach and to learn
about the possible reasons for occurring differences.

The results of the single-node-simulation are included in Figures 3.8 - 3.10 where
the probability distributions of the interarrival time, sending time and of the buffer
queue length is given in green. As in the generic data traffic 5 ·105 time steps were
covered. As input parameter to the simulation only pin = µin

i = 1
〈tarrive
i 〉 = 0.099

and pout = µout
i = 1

〈tsend
i 〉 = 0.241 were used as measured in the generic data traffic

simulation for the most sensible node at µ = 0.008.

The perfect correspondence of the single-node-simulation with the analytically
obtained result in the previous sections is expected since both approaches are
based on the assumptions of a strictly Poissonian in- and output of packets to
and from the node. The advantage of the single-node-simulation compared to the
analytical results is the accessibility of further, harder-to-describe observables.

On a very first look the results from the generic data traffic fit quite well to the
data obtained from the single-node-simulation and from the analytic approach
neglecting the statistical fluctuations for higher interarrival/sending times and
buffer queue lengths. But a closer look is in order here. Small deviations occur for
example for the probability distributions of the interarrival time. For very small
values of 〈tarrive

i 〉 the generic data traffic curve lies below the reference, at around
tarrive
i = 10 it is above. See also the inset in Figure 3.8 that emphasises that part

of the plot.

In the probability distribution of the buffer queue length slight differences are
visible, too. But looking at a larger number of similar graphs for other nodes
within this particular network realisation and other network realisations as well
no unitary trend is observable.

To be more precise, the simplified picture of a node with strictly Poissonian
input and output to a node does only hold up to a certain point of precision. The
described deviations are obviously caused by effects not taken into account in the
single-node-simulation nor in the analytical approach. For a principle understand-
ing of the most important features of a single node’s behaviour the approaches

53



3 Generic data traffic

shown in the previous sections are sufficient. But one has to keep in mind that
effects based on complex interactions in the network structure complicate this
picture.

3.3.4 Single-node temporal correlations

So far only one-point statistics were used in the investigation of simulated data
traffic in wireless ad hoc communication networks. In order to gain more insight in
the dynamical behaviour of nodes single-node temporal correlations were analysed.

The observable studied in more detail is the single-node temporal correlation of
the buffer queue length ni(t) of node i, named ri(∆t), which is defined as

ri(∆t) =
〈ni(t+ ∆t)ni(t)〉
〈ni(t)〉2

(3.27)

This observable may provide results about the status of the buffer queue ni at
different points in time separated by an interval ∆t. Figure 3.11 shows a char-
acteristic plot of ri(∆t) for the buffer queue of the most sensible node of the
constant-P reference network for different packet creation rates µ. The simula-
tion run spans 5·105 time steps. The critical packet creation rate of this particular
network was determined to be µcrit = 0.0101. The convergence of the single-node
temporal correlation ri(∆t) to 1 indicates that no correlations exist between the
buffer queues ni(t) and ni(t + ∆t) of this node after a certain interval ∆t. This
convergence to 1 is shifted to higher correlation times ∆t as the packet creation
rate grows. Such long range correlations indicate that a buffer queue state of a
node is not independent of its former states. Especially higher packet creation
rates that result in a higher input to a node and a more competitive output from
a node cause longer buffer queues. Packets once inserted in the buffer queue of
a node are kept there for much longer time scales which explains the shift of the
decorrelation time to higher ∆t.

To be able to compare the shape of the curves and to find possible similarities
one may assume them to be of a more fundamental form:

ri(∆t) =

(
f

(
∆t

T

))ζ
(3.28)

where the exponent ζ accounts for a scaling of the y-axis and T for a scaling of
the x-axis. Following equation (3.27) one can impose the condition

ri(∆t = 0) =
〈n2

i (t)〉
〈ni(t)〉2

(3.29)

and comes up with an expression for the scaling exponent ζ.

ζ =
ln(

〈n2
i (t)〉

〈ni(t)〉2 )

ln f(0)
(3.30)
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Figure 3.11: Single-node temporal correlations
The single-node temporal correlations ri(∆t) for the most sensible node of the
constant-P reference network are shown. The network graphs consists of 100
nodes with constant-P rule (kconstP = 24). The simulation covered 5 · 105 time
steps. Different colours correspond to different packets creation rates µ = 0.006
(red), µ = 0.007 (green), µ = 0.008 (blue), µ = 0.009 (pink), µ = 0.0095 (light
blue).

Setting the free parameter f(0) = 2 one fixes the transition through the ordinate.
This causes a scaling of the curves of Figure 3.11 as shown in the upper graph of
Figure 3.12 simply by plotting (ri(∆t))

1/ζ against ∆t. The figure clearly indicates

the direct relation between the normalised second moment
〈n2
i (t)〉

〈ni(t)〉2 of the buffer
queue and the respective y-scaling of the single-node temporal correlations.

When changing the values for T in equation (3.28) the corresponding curves
are shifted along the x-axis. The similar shape of the curves for different packet
creation rates µ almost pleads for a curve collapse onto one. The lower graph in
Figure 3.12 shows the result, where a best fit was obtained “by eye”. The almost
perfect correspondence of the curves indicates similar mechanisms underlying the
single-node temporal correlation ri(∆t) for a wide range of packet creation rates.

It is clear that the fitted µ-dependend parameter T (µ) has to correspond to
some characteristic time of a node. No suitable observable that describes this
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Figure 3.12: Scaling of the single-node temporal correlations
The single-node temporal correlations ri(∆t) for the most sensible node of the
constant-P reference network are shown. Parameters are the same as in Figure
3.11. In the upper graph a scaling according to equations (3.28) to (3.30) was
done. In the lower graph the curves were collapsed by rescaling the parameter T
in equation (3.28) “by eye”.
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scaling sufficiently well has been identified so far. Knowing about this problem
and the presented similarity of shape for the single-node temporal correlations
ri(∆t) one desires a more fundamental understanding of this issue.

Describing the state of a queue at a time step t+ 1 analogous to (3.16) as

p(ni, t+ 1) = µin
i p(ni − 1, t) + µout

i p(ni + 1, t) + (1− µin
i − µout

i )p(ni, t) (3.31)

with µin
i and µout

i being the in- and outflux to node i assuming Poissonian dis-
tributed events. Suppressing the indices i this equation can be rewritten as

p(n, t+ 1)− p(n, t) =
(µout − µin)

2
(p(n+ 1, t)− p(n− 1, t))

+
(µout + µin)

2
(p(n+ 1, t)− 2p(n, t) + p(n− 1, t)) . (3.32)

In the limit of long buffer queues n � 1 one introduces 1 = ∆t = ∆n. A switch
to a continuous representation of this equation is possible by applying the limit
∆t→ 0 and ∆n→ 0. Replacing n with x one comes up with

∂p(x, t)

∂t
= −(µin − µout)

∂p(x, t)

∂x
+

(µout + µin)

2

∂2p(x, t)

∂x2
(3.33)

which is a representation of a Fokker-Planck equation. (µin− µout) = −γ, (γ > 0)

can be identified as the time independent drift coefficient and (µ
out+µin

2
) = D

2
is

referred to as the diffusion constant. In that respect the Fokker-Planck equation
describes the temporal evolution of a probability density function, in this case of
the distribution of the buffer length n = x with a constant drift and an additional
diffusive element. A restriction to non-negative buffer queues imposes a first
boundary condition. For reasons of normalisation the probability of having an
infinite buffer queue has to vanish, too, which is a second boundary condition.
Writing equation (3.33) as a continuity equation one defines a probability current

J(x, t) = −γp(x, t)− D

2

∂p(x, t)

∂x
. (3.34)

The boundary conditions can now be expressed in terms of this probability current
as J(x = 0, t) = 0 and J(x =∞, t) = 0. These conditions fix the free integration
constant for the stationary solution

ps(x) = Cse
− 2γ
D
x (3.35)

with

Cs =
2γ

D
(1− e− 2γ

D
L)−1 . (3.36)

L is an upper integration constant which has to go to infinity at an appropriate
point.
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To solve the time dependent Fokker-Planck equation the ansatz of Gardiner [65]
is suitable

p(x, t) = ps(x)q(x, t) (3.37)

which is expanded in eigenfunctions

q(x, t) = qλ(x) e−λt . (3.38)

Using this ansatz in (3.33) the eigenfunctions have to be of the form

qλ(x) = C1e
α1x + C2e

α2x (3.39)

with

α1/2 =
γ

D
±
[
γ2

D2
− 2λ

D

] 1
2

. (3.40)

The current from equation (3.34) can be expressed in terms of the ansatz in
equation (3.37) as

J(x, t) = −D
2
ps(x)

∂q(x, t)

∂x
(3.41)

which allows the incorporation of the boundary conditions J(x = 0, t) = 0 and
J(x = L, t)L→∞ = 0. This results in a condition for the relation of α1 and α2

α1α2(eα2L − eα1L) = 0 . (3.42)

Two cases can now be distinguished. For α1α2 = 0 it follows the eigenvalue λ = 0.
Because of the boundary conditions the corresponding eigenfunction has to be
fixed to q0(x) = 1. In the case eα2L = eα1L the eigenvalue λ is a function of an
integer m

λm =
D

2L2

[(
γL

D

)2

+ (mπ)2

]
(3.43)

which causes for the exponents

α1/2 =
γ

D
± i mπ

L
. (3.44)

One can now derive the expressions for qm(x) = qλm(x). Using the normalisation
[65] ∫ L

0

dx ps(x) qm(x) qm′(x) = δmm′ (3.45)

the eigenfunctions and their corresponding eigenvalues are given by

q0 = 1 ,

qm = Cme
γ
D
x

[
γ

D
sin

(
mπ

L
x

)
− mπ

L
cos

(
mπ

L
x

)]
(3.46)
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with

C2
m =

DL

γ

[
1− e− 2γL

D

(γL
D

)2 + (mπ)2

]
, m = 1, 2, 3, ... (3.47)

The solution to the Fokker-Planck equation (3.33) can be written in terms of
eigenfunctions:

p(x, t) =
∑

m

Am ps(x) qm(x) e−λmt (3.48)

with

Am =

∫ L

0

dx qm(x) p(x, 0) . (3.49)

The conditional probability p(x, t|x0, 0) is given by the initial condition p(x, 0|x0, 0) =
δ(x− x0). It follows

Am =

∫ L

0

dx qm(x) δ(x− x0) = qm(x0) (3.50)

and
p(x, t|x0, 0) =

∑

m

ps(x) qm(x) qm(x0) e−λmt . (3.51)

Following the calculations in Gardiner [65] a single-node temporal correlation is
given by

〈x(t) x(0)〉 =

∫
dx

∫
dx0 x x0 p(x, t|x0, 0) ps(x0)

=
∑

m

(∫
dx x ps(x) qm(x)

)2

e−λmt . (3.52)

In order to let L → ∞ the substitution x = Dmπ
γL

is introduced that replaces the
sum with a suitable integration

∑

m

(...)→
∫ ∞

0

γL

Dπ
dx... (3.53)

In the special case t = 0 the single-node temporal correlation evaluates to

〈x2(0)〉 = 2〈x(0)〉2 (3.54)

which makes the plot of the single-node temporal correlation to start at a value
of 2 on the ordinate. This matches the observations in Figure 3.11. The further

the packet creation rate µ approaches its critical value µcrit the better 〈x
2(0)〉
〈x(0)〉2 con-

verges to 2. This is consistent with the continuum assumption, the Fokker-Planck
equation is based on. To justify a transition from discrete packets to a continuous
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queue, the mean buffer queue length has to be high, ∆n
〈n〉 � 1, respectively. This

is the case for µ→ µcrit.
In the specific case equation (3.52) translates to

〈x(t) x(0)〉 =
1

4

(
D

γ

)2

+
4

π

(
D

γ

)2

e−
γ2

2D

∫ ∞

0

dy
y2

(1 + y2)3
e−

γ2

2D
ty2

. (3.55)

The later integral is a representation of a confluent hypergeometric function [66]
which simplifies the result to

〈x(t) x(0)〉 =
1

4

(
D

γ

)2

+
4

π

(
D

γ

)2

e−
γ2

2D

[
1

2
Γ

(
3

2

)
U

(
3

2
,−1

2
,
γ2

2D
t

)]

=
1

4

(
D

γ

)2

+
4

π

(
D

γ

)2

e−
γ2

2D

[
π

16
M

(
3

2
,−1

2
,
γ2

2D
t

)

+
3

2

√
π

(
γ2

2D
t

)2

M

(
3,

5

2
,
γ2

2D
t

)]
. (3.56)

This expression can be seen as a fully analytical description of the temporal cor-
relation of the buffer queue length at two points in time separated by ∆t = t. For
three different packet creation rates µ the y-scaled single-node temporal correlation
of the most sensible node of the constant-P reference network is shown in Figure
3.13. Therefore equation (3.56) was normalised analogous to equation (3.27). Pa-
rameters for the plot are γ = −(µin

i (µ)−µout
i (µ)) and D = (µout

i (µ) +µin
i (µ)) with

µin
i (µ) and µout

i (µ) obtained from the generic data traffic simulations for different
packet creation rates µ.

The plots of the single-node temporal correlation obtained from generic data
traffic (as already shown in Figure 3.11) and a single-node temporal correlation
from the single-node-simulation introduced in Section 3.3.3 are also included in
Figure 3.13. The later also using the corresponding µin

i (µ) and µout
i (µ) as input

parameters that have been measured in the generic data traffic simulation for the
particular packet creation rate µ. Both simulations span 5 · 105 time steps.

Two important results can be derived from this plot: First, for packet creation
rates µ→ µcrit the decline of the correlation functions is shifted to higher correla-
tion times. This result holds for the data driven single-node temporal correlation
as well as for the analytically obtained result and the single-node-simulation. In
that respect the analytic approach reveals the same results which indicates that
the x-scaling is an inherent feature of the simple assumptions made about the
behaviour of the buffer queue.

The reason for differences between the analytical results and the single-node-
simulation has to be seen in the transition from the discrete description of the
buffer queue to a continuous representation. This transition is only justified for
longer buffer queues which is the case for large packet creation rates µ → µcrit.
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Figure 3.13: Analytic and simulated single-node temporal correlations
The single-node temporal correlations ri(∆t)

1/ζ for the most sensible node of the
constant-P reference network are shown. The network graph consists of 100 nodes
with constant-P rule (kconstP = 24). The simulations covered 5 · 105 time steps.
Different colours correspond to different packets creation rates. The thick lines
are the results from the generic data traffic, thin lines are obtained from the
single-node-simulation. Analytic results are according to equation (3.55).

This is verified in Figure 3.13. For µ = 0.009 the curves of the single-node-
simulation and the analytic description almost collaps. The differences are more
pronounced for smaller µ due to the discrepancy between the discrete and contin-
uous handling of the buffer queue.

Second, clear differences between the generic result and the analytic solution
are visible. It can be assumed that these differences occur because of correlations
between neighbouring but also further distant nodes. Such phenomena have to be
taken into account especially in the next section where the focus is on a deeper
understanding of the mean sending times of the nodes in N .

It has to be pointed out that the theoretical approach shown above as well as
the single-node-simulation is based on an ideal picture of just an isolated node as-
suming the arrival and sending of data packets to follow a pure Poissonian process.
No correlations and interactions between nodes have been taken into account. But
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several signs like the differences in the probability density functions of the interar-
rival and sending times mentioned above as well as the just shown results indicate
that the observation of an isolated node does not reveal the complete picture. All
these approaches in this chapter are valuable tools in the analysis of a complex
communication network, and many of the results provide a more then sufficient
description of the underlying dynamics. The complete understanding of the influ-
ences on the dynamic by the complex interplay of many constituents in different
kinds of networks are still a major challange in network research [54, 55].

3.4 Estimation of the sending time

The importance but also the difficulties in the determination of the average send-
ing times 〈tsend

i 〉 or their reciprocal, the outgoing rates µout
i have already been

addressed in Section 3.2. Not only the estimation of the critical load depends
very sensitively on the sending time, also for the purpose of optimising network
topologies an accurate description is of high value [35]. This graph theoretical
description of the sending times is a complex problem reflecting many difficulties
inherent in such networks. With the accumulated knowledge especially about the
behaviour of a nodes buffer queue as presented in Section 3.3.2 this matter will
now be pushed further. The dependence on the packet creation rate µ is explicitly
incorporated, although a fully consistent approach can not be obtained.

Starting out from the perspective of a single node i with a non-empty buffer
queue ni > 0, as long as there are no other nodes with non-empty buffer queues in
its surrounding, it will have no problems forwarding its packets. The sending time
of this node will thus be tsend

i = 1. In the other case the node will not get immediate
sending permission if it is already mac-blocked by a first order neighbour j1 ∈ N in

i

that has at least an outgoing link towards i and takes part in another transmission.
Either node j1 is itself sender and thus blocks all its outgoing neighbours or it does
receive a packet from one of its bidirectional neighbours j2 ∈ {Nj1 \ i}. Based
upon these considerations the sending time has to be expressed as

tsend
i = 1 + ∆t1 + ∆t2 . (3.57)

The contribution ∆t1 represents the competition for sending with the first order
neighbours j1 that have at least an unidirectional link towards i. It can be ex-
pressed as the sum over the probability of all these nodes to have at least one data
packet in their respective buffer queues

∆t1 =
∑

j1∈N in
i

p(nj1 ≥ 1) . (3.58)
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Along the same line ∆t2 is defined as

∆t2 =
∑

j2∈{NN in
i
\N in

i }
p(nj2 ≥ 1)

∑

j1∈N in
i

N

(N − 1)

Blink
j2j1

2Bnode
j2

. (3.59)

In addition to the prerequisite that the second order neighbour j2 ∈ {NN in
i
\N in

i }
has at least one packet it is also required that the packet is forwarded to a first
order neighbour j1 ∈ N in

i of i. This is represented by the sum over the ratio
Blink
j2j1

/2Bnode
j2

which is appropriately normalised.
Using equation (3.20) the probability for a non-empty buffer queue can be ex-

pressed in terms of in- and outflux to node j

p(nj = 1) = 1− p(nj = 0) =
µin
j

µout
j

. (3.60)

Employing the identities (3.9) and (3.10) equation (3.57) can be rewritten as

tsend
i = 1 +

∑

j1∈N in
i

µBnode
j1 (N − 1)tsend

j1 +
∑

j2∈{NN in
i
\N in

i }
µBnode

j2 Ntsend
j2

∑

j1∈N in
i

Blink
j2j1

2Bnode
j2

.

(3.61)
This is an inhomogeneous set of N coupled linear equations in tsend

i . The solu-
tion for the node-dependent sending time, that can be obtained numerically, does
explicitly depend on the packet creation rate µ in a non-linear manner.

It has to be pointed out that equations (3.58) and (3.59) overestimate the com-
petitive strength of the first and second order neighbours of i. These neighbour-
ing nodes can already be mac-blocked by some further distant communication.
In such cases these nodes do not compete with i to gain sending permission. In
order to correct this shortcoming one would have to include a probability that
adequately reflects the chances of such previous mac-blocking events. Since an
appropriate modelling of this quantity can not be provided, two versions of equa-
tion (3.61) will be discussed; one excluding and one including the contributions
from ∆t2 given in (3.59).

For a given network realisation the graph theoretical quantities node inbetween-
ness Bnode

i and link inbetweenness Blink
i can be calculated as presented in Section

3.1.2. The coupled system of linear equations (3.61) can be solved numerically
depending on the packet creation rate µ. The lower graph in Figure 3.14 gives
an illustration of these results for the most sensible node of the constant-P ref-
erence network. Again, this network consists of 100 nodes with the constant-P
rule (kconstP = 24). The simulations of the generic data traffic covered 5 · 105 time
steps. They are compared to the results of (3.61). The blue data points refer to
the exclusion of the ∆t2 contributions, the green points take them into account.
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Figure 3.14: Estimation of interarrival and sending time
The upper graph shows the estimate of the mean interarrival time 〈tarrive

i 〉 ac-
cording to equation (3.9) in comparison to the generic data traffic. The graphs
apply for the most sensible node in the constant-P reference network (100 nodes,
kconstP = 24, 5 · 105 time steps). The lower graph provides an illustration of the
mean sending time 〈tsend

i 〉 according to (3.61). The blue data points correspond
to the exclusion of the ∆t2 contributions, the green ones to their inclusion.
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As expected the complete description with the ∆t2 contributions overestimates
the results from the generic data traffic. In contrast, their exclusion is closer to
the real data. However, both cases show a strong non-linear dependence of the
nodes sending time on the packet creation rate µ.

The estimated sending times from equation (3.61) can be used to approximate
the end-to-end throughput of a given network. It was shown in [35] that the
scaling behaviour Te2e ∼ Nκ, discussed in Section 3.2.1, with the particular scaling
exponents κ for constant-P and minimum node degree networks observed in the
data traffic simulations could be reproduced by use of these results.

3.5 Data traffic in networks with minimum node degree
rule

Except of the throughput analysis in Section 3.2.1 the studies within this chap-
ter have been focused on network graphs with constant-P power assignment
kconstP = 24. In particular one realisation of such a network, called the constant-P
reference network, of 100 nodes was chosen to exemplarily study dynamical prop-
erties inherent to data traffic on this class of random geometric graphs. It should
be explicitly pointed out, that the features studied in the previous sections for the
constant-P reference network have been checked for a number of similar network
realisations constructed out of the constant-P ensemble with kconstP = 24. In
that respect the obtained results can be seen as general properties for this specific
model of data traffic on such network topologies.

In this respect it is a legitimate question to ask now whether and how the
observed properties do show a dependence on modified network topologies, like
for example those generated with the minimum node degree rule for connectivity
introduced Section 1.4. These networks exhibit one significant difference compared
to the networks with constant-P rule: Since networks with the minimum node
degree rule come with an inhomogeneous transmission power distribution they can
contain unidirectional links. As discussed in Section 3.1.1 these links can not be
used for data transfer but do still carry the mac-blocking signal. Considering the
fact that the actual transmission event regulating the in- and outflux to a node is
still a competitive action, the pure existences of unidirectional links is not expected
to show strong impact on the dynamical properties of the generic data traffic.
A detailed analysis of network realisations with the minimum node degree rule
reproduced the results found for the networks with constant-P power assignment.
Without showing it shall be remarked that the probability distributions of the
interarrival time, the sending time and the buffer queue length showed exponential
behaviour strongly suggesting the Poissonian in- and outflux to the nodes in N
for the networks with minimum node degree rule. Also, the single-node temporal
correlations exhibit a qualitative identical picture compared to the constant-P rule
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networks. A comparison of the throughput for constant-P networks with networks
constructed by the minimum node degree rule has been given in Figure 3.4. The
differences especially towards smaller network sizes N have to be attributed to the
fact that a constant-P network with kconstP = 24 is more likely to be almost fully
connected than a minimum degree network with kmin = 8. As explained in Section
3.2.1 a fully connected network where each node i has a direct bidirectional link
to every other node j ∈ {N \ i} is superior for small network sizes N by always
guaranteeing Te2e = 1.

This close correspondence suggests that the actual routing decisions are insensi-
tive to topological changes between networks with constant-P and minimum node
degree rule. The reasons have to be seen in the exclusive use of shortest paths
for packet forwarding that eliminates all further degrees of freedom within the
routing decisions. It is precisely this enforcement of one predefined path that sup-
ports the Poissonian in- and outflux. Even if a node is almost critical no detour
is allowed. As soon as permission is obtained the node will receive further pack-
ets. This behaviour is independent from the existence of unidirectional links. The
influences of a modified routing that is not based on topological shortest paths
di,f are presented in Chapter 4. The impact of the actual routing decisions on the
dynamical properties of data traffic becomes obvious.

3.6 User behaviour

In a real world scenario different amounts of data are send back and forth be-
tween to two or more partners. This data is split into packets of definite size,
which causes not just one but a multitude of packets to be generated at once
and to travel along the same or similar paths. This particular property is one
effect that contributes to multiscale phenomena in network traffic. Prominent
examples are self-similarity of round-trip-times in Ethernet traffic [13] and in the
World Wide Web [67, 68], connection durations [11] and interarrival times [42] in
communication networks.

Two specific approaches have been applied to incorporate such phenomena in
the generic data traffic simulation. In the first approach not just one but a fixed
number of packets was generated at each chosen node, in the second the number
of packets was determined according to a truncated Pareto distribution. These
modifications do not represent all the features present in real world user behaviour.
Nevertheless they allow to study the differences in network performance that occur
if not just one but a multitude of packets start from a certain node. A presentation
of the simulation results is given.

In the first modified version of data traffic not just one data packet is created
at a node with probability µ at each time step but pcs packets are generated
there with a probability µeff = µ

pcs
. pcs is referred to as the packet cluster size
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which is nothing else then an integer number counting the packets created in one
instance at one node. The packet cluster size pcs is fixed within one simulation,
so every node i faces the same static probability of a packet generation event
µi = µeff = µ

pcs
. Because of this latter definition the average total number of

packets generated in one time step µeff · pcs ·N = µ
pcs

pcs ·N is still identical to
the former version µN .

The throughput Te2e = µcritN has been tested exemplarily for two packet cluster
sizes pcs = 4 and pcs = 16. The results are shown in Figure 3.15. The simulations
have been performed on networks of different size N with the constant-P power
assignment, kconstP = 24 and spanned 5 · 105 time steps. Each throughput was
sampled over 100 different network realisations. As a reference the curve for
pcs = 1, already shown in Figure 3.4, is also included in the plot. A massive
decline of the throughput is observed for the pcs = 16 case at higher system sizes.
For networks of size N ≈ 20 the network is almost fully connected for kconstP = 24
with D ≈ 1 where packets reach their final destination in one hop. As soon as
the network size grows multihop connections are necessary in order to transmit
packets. For large clusters of data packets the individual packets now start to
interact with each other along their shortest paths. This significantly slows down
data traffic as indicated in Figure 3.15. The effect is not that pronounced for the
pcs = 4 case.

The arrival of one first packet to any node is an indication of (pcs − 1) packets
to arrive soon. This effect becomes visible in the probability distribution of the
buffer queue length and the interarrival time. Figure 3.16 shows the probability
distribution of the buffer queue length p(ni) for the most sensible node of the
constant-P reference network with kconstP = 24, 100 nodes. The results for pcs = 4
and pcs = 16 are depicted for a subcritical packet creation rate µ = 0.009 in
the case of the constant-P reference network. As a reference the analytically
obtained curve for pcs = 1 from equation (3.20) is included in the plot. Clear
deviations from the exponential behaviour are visible. The close correlation of the
subsequent arrival of packets from one cluster causes a significant contribution to
the probability distribution at higher lengths of the buffer queue.

Similar deviations are observed in the corresponding probability distributions
of the interarrival time of that same node, given in Figure 3.17. On the one hand
the arrival of a packet to a buffer queue is a clear sign of (pcs − 1) other packets
to arrive soon. This contributes to rather small interarrival times tsend

i . 〈k〉 = 25
in the order of the number of neighbours of i. On the other hand the reduced
effective packet creation rate µeff = µ

pcs
leads to longer periods where no clusters

of packets are forwarded via i. This accounts for the long tail of the probability
distribution towards high interarrival times.

Without showing it shall be remarked that the probability distribution of the
sending time p(tsend

i ) does also differ from the ideal pcs = 1 case, altough the
deviations are not that significant. The major reason for these rather small changes
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Figure 3.15: Throughput for different user behaviour
The throughput Te2e for different user behaviours is shown depending on the size
N of the network. A sampling over 100 network realisations has been performed
for each network size. All networks come with the constant-P rule with kconstP =
24. The results for pcs = 4 (blue), pcs = 16 (green) and pcs = 1 (red) are
depicted. For generic data traffic with a Pareto-like packet generation the curves
for a = 1.5 (pink) and a = 0.9 (light blue) are provided. The error bars correspond
to the variance of the sampling process.

has to be seen in the particular way of measuring the sending time which is only
counted if the buffer queue is non-empty. So there might be longer periods where
the node is just empty, doing nothing. The interarrival time counts these periods,
the sending time does not.

Compared to the single-node temporal correlations ri(∆t) studied in Section
3.3.4 for the pcs = 1 case Figure 3.18 illustrates the changes introduced by the
simultaneous generation of pcs > 1 packets. Basically the correlation decline is
shifted towards larger times ∆t for higher packet cluster sizes pcs. This obser-
vation nicely fits in the above given context that one arriving packet is always
correlated with the arrival of the other simultaneously generated packets to a
given node. In a simplified picture this causes a buffer queue to grow over a cer-
tain period in time. Until all the packets are send the buffer queue yields ni > 0
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Figure 3.16: Probability distribution of the buffer queue: user-input
The probability distribution of the buffer queue length p(ni) for the most sensible
node of the constant-P reference network is shown. The results for pcs = 4 and
pcs = 16 are depicted for a subcritical packet creation rate µ = 0.009. The
simulations covered 5 · 105 time steps. As a reference the analytically obtained
curve for pcs = 1 from equation (3.20) is included in the plot; µin

i = 0.117 and
µout
i = 0.173 are obtained from the generic data traffic simulation at µ = 0.009.

which holds a significant contribution to 〈ni(t+ ∆t)ni(t)〉. This effect causes the
graphical representations of the single-node temporal correlations to be almost
constant for smaller to intermediate ∆t and to shift the onset of the decline.

In the second modification of the generic data traffic the number of packets m
generated at a chosen node at one time step follows an truncated Pareto distri-
bution. In most cases the amount of data transmitted is rather small (and so fits
in one data packet) but there is a non-zero probability of having so much data
to require up to pcsmax packets. A similar scale-free behaviour of the probability
density functions of the size of data packets to be transmitted is observed in the
World Wide Web [12, 68] and similar data networks [13].

In each time step a node is chosen to generate new packets with a probability
µeff = µ

〈m〉 . The exact number of packets to be generated is then determined by
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Figure 3.17: Probability distribution of the interarrival time: user-input
The probability distribution of the interarrival time p(tarrive

i ) for the most sensible
node of the constant-P reference network is shown. Parameters are the same as
in Figure 3.16. The inset illustrates the same plot in log-log scale. As a reference
the analytical obtained curve for pcs = 1 from equation (3.15) is included in the
plot; µin

i = 0.117 is obtained from the generic data traffic simulation.

the probability density function of the discrete truncated Pareto distribution

p(m) =
1

C
akam−a−1 (m ∈ N, m = 1 ... pcsmax, m ≥ k) (3.62)

with C =
∑pcsmax

m=1 akam−a−1 being the normalisation constant. The mean number
of packets created by a Pareto event is given by

〈m〉 =
pcsmax∑

m=1

mp(m) . (3.63)

The average total number of packets created in one time step is given by µeff〈m〉N =
µ
〈m〉〈m〉N which is again identical to the former version µN . Without loss of gen-
erality the parameter k is set 1.

The performance of the network was tested for two different scaling exponents
a = 0.9 and a = 1.5 of the Pareto density function in equation (3.62) with
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Figure 3.18: Single-node temporal correlations: user-input
The single-node temporal correlations ri(∆t) for the most sensible node of the
constant-P reference network are shown. Parameters are the same as in Figure
3.16. For comparison the graph for pcs = 1 is included in the plot.

pcsmax = 16. The mean number of generated packets according to equation
(3.63) is evaluated to 〈m〉 = 2.42 in the a = 0.9 case and 〈m〉 = 1.662 in the
a = 1.5 case. The corresponding curves for the throughput depending on the
network size are included in Figure 3.15. Again, if the average packet cluster size
of generated packets increases, as in the a = 0.9 case compared to the a = 1.5
case, the throughput decreases for higher packet creation rates. The same argu-
mentation, that packets of one cluster interact with each other on their common
path to the final receiver, should also hold for the Pareto-like packet generation.

A representative probability distribution of the interarrival time measured at the
most sensible node of the constant-P reference network is shown in Figure 3.19 for
the two different scaling exponents a as well as a reference plot for a fixed packet
cluster size pcs = 1. The packet creation rate was fixed to µ = 0.0095 which is in
the subcritical regime for the constant-P reference network. The divergence from
the exponential behaviour is clearly visible in the log-lin plot. The probability of
finding rather large interarrival times does not converge to zero as quickly as in
the pcs = 1 case. The inset shows the same probability distributions in a log-log
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Figure 3.19: Probability distribution of the interarrival time: Pareto-
input
The probability distribution of the interarrival time p(tarrive

i ) is illustrated for the
Pareto-motivated data traffic with scaling exponents a = 0.9 (blue) and a = 1.5
(green). The analytical curve obtained from (3.15) with µin

i = 0.117 for pcs = 1
(red) is also included. The most sensible node of a constant-P reference network
was observed at µ = 0.0095. The simulation covered 5 · 105 time steps.

plot.

In a similar fashion a non-zero probability for large buffer queue lengths is
introduced in the corresponding probability distribution as depicted in Figure
3.20, analogous to the fixed pcs case. The subsequent arrival of packets in larger
clusters causes the buffer queue of the most sensible node to temporarily store
significant numbers of packets. The probability distributions for the buffer queue
length clearly deviates from the ideal exponential behaviour. Riedi et al. [42]
state that the distributions can be better fitted by a Weibull probability density
function

p(aw ,bw)(n) =
aw
bw

(
x

bw

)(aw−1)

e−(x/bw)aw (3.64)

in the case of scale-free data traffic. The corresponding fits in Figure 3.20 support
this picture. Parameters are aw = 0.77 and bw = 73.46 in the a = 0.9 case and
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Figure 3.20: Probability distribution of the buffer queue: Pareto-input
The probability distribution of the buffer queue length p(ni) is illustrated for the
Pareto-motivated data traffic with scaling exponents a = 0.9 (blue) and a = 1.5
(green). The most sensible node of a constant-P reference network was observed
at µ = 0.0095. The simulation covered 5 · 105 time steps. The curves are fitted
with a weibull probability density function (3.64). Parameters are given in the
text.

aw = 0.79 and bw = 28.96 in the a = 1.5 case.

An interesting behaviour could be observed looking at the probability distribu-
tion of the end-to-end time delay p(te2e) that has already been discussed in Section
3.2.2 for the pcs = 1 case. A best fit with a log-normal probability density func-
tion (3.14) was used to describe the probability distribution in the pcs = 1 picture.
The results were promising but not perfect, consult Figure 3.7. In contrast, with a
Pareto-like distribution of the packet cluster size the log-normal description of the
probability density function of the end-to-end time delay provides almost perfect
results over many orders of magnitude. The plots for the Pareto-motivated data
traffic with scaling exponents a = 0.9 and a = 1.5 as well as the pcs = 1 case are
shown in Figure 3.21. A best fit with a log-normal probability density function
according to equation (3.14) is attached to each of the data sets. The particular
fitting parameters are µL = 3.589 and σL = 1.665 in the a = 0.9 case; µL = 3.132
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Figure 3.21: Probability distribution of the end-to-end time delay:
Pareto-input
The probability distribution of the end-to-end time delay p(te2e) is illustrated
for the Pareto-motivated data traffic with scaling exponents a = 0.9 (blue) and
a = 1.5 (green) as well as the pcs = 1 case (red). A constant-P reference network
was used with 100 nodes and constant-P rule (kconstP = 24). Fitting parameters
are given in the text.

and σL = 1.584 in the a = 1.5 case; and µL = 2.504 and σL = 1.060 in the pcs = 1
case.

As already discussed in Section 3.2.2, a detailed understanding of this phenom-
ena could not be provided so far. Especially with non-Poissonian in- and outflux
the task becomes even more difficult.

3.7 Summary

Within this chapter a simplified data traffic model was employed to study general
properties of network traffic on wireless multihop ad hoc networks. The model is
based on the random generation of data packets in the network that are forwarded
along shortest paths to their final receiver. The transmission process pays respect
to the special limitations of data transfer in a shared medium by employing a
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simplified medium access control protocol (mac).
The identification of the node inbetweenness Bnode

i as a suitable graph theoreti-
cal measure to account for the frequency of use of a given node i and the definition
of the influx µin

i = 1/〈tarrive
i 〉 and the outflux µout

i = 1/〈tsend
i 〉 provided valuable

tools for the description of global and local network observables. The observation
of a Poissonian in- and outflux to the nodes in N allowed an analytic understand-
ing of a number of dynamical network observables like the buffer queue length and
the single-node temporal correlations. A description of the sending time solely
based on graph theoretical measures has been given in an approximate form.

A comparison of data traffic on network graphs with constant-P and mini-
mum degree power assignment did not show remarkable differences. It has to
be attributed to the packet forwarding along shortest paths that the dynamical
properties of network traffic are almost insensitive to a modified topology.

A modified packet generation was included to model specific user behaviour. Es-
pecially for the influx a deviation from the Poissonian behaviour can be observed.
Based on the previous findings a qualitative understanding of the occuring differ-
ences could be provided.
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The fast and efficient flow of data through any communication network represents
a highly desired feature. It is a major design principle but also a direct criteria for
the performance of a network. In the recent literature many publications focus on
the close connection between the topology of a network and its possible advantages
and disadvantages for different routing strategies [64, 69, 70]. The main focus was
caught by the investigation of internet data traffic [71, 72, 73]

Future wireless mobile ad hoc networks require a fast adaption to changes in
the topology caused by the mobility of nodes, their on/off states or their temporal
activity. As already mentioned the ad hoc networks can hardly be based on small
world scenarios that allow communication over long distances with a fairly small
number of hops due to the shared communication media and the emerging interfer-
ence effects. Unlike structures in the World Wide Web where connections between
major hubs are based on powerful high capacity links corresponding communica-
tion links in a wireless ad hoc network provide almost identically limited capacity
for data transfer. Just taking these special properties of wirless ad hoc commu-
nication networks into account it becomes clear that these particular topologies
require specific routing strategies for optimal performance. The highly complex
interplay between topology of a network and dynamic processes on that network
have developed into a focal point of latest network research [64, 74].

Within this chapter the investigations are limited to the constant-P topolo-
gies studied so far. Given this restriction the fundamental aim of this chapter
is to provide simple algorithms that demonstrate the fundamental possibility of
establishing routing schemes that serve the basic needs of wireless ad hoc commu-
nication including elements of distributive flow control. Because of the absence of
a master authority in the observed networks a decentralised approach is desired
that reveals a high degree of self-organisation and stability under different traffic
situations. It should be mentioned that in this chapter no explicit protocols will be
constructed. It is not the intention to design a complete routing algorithm ready
to be implemented in an existing realisations of wireless communication networks.
It seems far more valuable to review the specific needs of wireless communication
and to present and discuss possible algorithms that might be further developed
into complete protocols.

The underlying topology of the communication network is kept fixed. Thus
mobility and emergence or loss of communication links as well as the management
of vanishing or newly introduced nodes is not taken into account. The question to
be asked is how routing can be established in an environment where nodes only
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have information about the local neighbourhood and how this information can be
employed to provide efficient routing.

Section 4.1 reviews the routing scheme based on shortest paths. By including
the choice between degenerate shortest paths depending on the buffer queue length
of the next hop neighbour the actual state of the network is used as a decision
criteria. Section 4.2 introduces a self-organised routing similar to an asynchronous
distance vector routing proposed by Boyan and Littman [75]. The routing scheme
is modified in order to cope with wireless ad hoc networks. In the simplified
version of Section 4.2 the routing converges to the shortest path algorithm from
Section 4.1. This approach is modified in Section 4.3 by introducing network state
dependend measures in the update procedures of the routing tables. The routing
presented in this section adapts to spatially and temporarily localised congestion
and allows significantly increased throughput compared to the so far used fixed
shortest path method. Section 4.4 additionally includes a learning rate that keeps
a memory of former network states.

4.1 Shortest path algorithms

The algorithm used in the previous chapter to manage the routing of packets from
the chosen source node i ∈ N to the final receiver f ∈ {N \ i} employed shortest
paths σi,f in the sense of Section 1.1. Since this routing algorithm is only based
on topological measures of the network graph this approach is classified as static
routing [76]. A classical Dijkstra algorithm [57], as explained in Section 3.1.1, is
employed for the determination of the shortest paths. Thus for every node i a
routing table

F i
f = S (4.1)

can be supplied that provides a list S of suitable bidirectional neighbours j ∈ Ni

for every final receiver f ∈ {N \ i} that minimises the hop-distance towards f .

If more than one shortest path to the final receiver f exist that split at i then
more than one possible next hop neighbours are listed in S. The number of choices
in S is denoted as |S|. For the data traffic simulation employed in the previous
chapter all lists S are from the very beginning reduced to just one element taken
randomly out of possibly different choices in S. In this way path degeneracy is
completely suppressed. Every node i only holds its limited routing table F i

f = S1.
This routing-scheme is referred to as fixed-fifpo, where the “fifpo” means first-
in-first-possible-out and takes into account that a node chosen as a sender can
sequentially try to send the packets in its buffer queue. This algorithms allows
the node to send its second packet in its buffer to its next hop node in case the
sending of the first packet is not possible due to a mac-blocked next hop node.
The node only remains quiet if none of the packets in its buffer queue can be
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forwarded to any of the designated next hop nodes. Consult again Section 3.1.1
for reference.

The existence of the full information about all degenerate shortest paths in S
allows the introduction of two extended versions of the shortest path algorithms:
the random-fifpo and the shortest-fifpo routing scheme. Their presentation pro-
vides a simple background for the introduction of the tools necessary to compare
routing and network performance in the remainder of this chapter.

The random-fifpo routing scheme only differs that far from the fixed-fifpo that
each node contains not only the limited routing lists S1 with only one predefined
element for each F i

f but the complete list S. For every packet in a nodes buffer
queue which is checked for sending, one out of the possible neighbours jnext con-
tained in S is chosen with equal probability p(jnext ∈ S) = 1/|S|. If the chosen
next hop node is already mac-blocked the fifpo mode proceeds to the next packet
in the buffer queue or terminates the sending assignment for the chosen sender
node if the packet is the last in the buffer queue. It does not try to send the same
packet to another node in S. This routing-scheme does simply not stick to the
one predefined shortest path for every end-to-end data transfer but moves around
in the space of possible shortest paths between two nodes. This routing scheme
is more suitable to reproduce the node inbetweenness Bnode

i defined in (3.2). The
degeneracy of shortest paths is now present in the routing algorithm, although
the different shortest paths are not weighted equally.

The so called shortest-fifpo routing is a first approach towards a routing-scheme
that takes the current local network state into account. As in the random-fifpo
scheme every node i has the complete information F i

f = S about shortest paths to
all other nodes f in the network. But instead of randomly choosing one node out
of this list that particular node is picked that besides its shortest path feature also
maintains the shortest buffer queue (minj∈S nj). In that instance the sending node
i uses information about its local surrounding for a routing decision. It should be
remarked that if more than one node qualifies with a shortest buffer queue one of
them is picked randomly.

A comparison of the performance of the three so far introduced shortest path
routing schemes is given in Figure 4.1 where the throughput Te2e is plotted as
a function of the system size N . The simulations of 10, 000 time steps have
been performed on constant-P networks with kconstP = 24. Each data point was
sampled over 100 different network realisations, the variance of the sampling is
given by the error bars. Determination of the critical packet creation rate µcrit =
Te2e/N was done by a binary search algorithm. Already the simple step from
the fixed-fifpo to the random-fifpo routing scheme causes a measurable increase
in the throughput Te2e. Even more superior is the performance of the shortest-
fifpo routing scheme which is a first indication about the important influence of
information about the current network state.

For a fixed system size N analog results can be obtained from Figure 4.2. For
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Figure 4.1: Throughput for the shortest path algorithms
The end-to-end throughput 〈Te2e〉 averaged over 100 different network realisations
of constant-P type with kconstP = 24 is shown for three shortest path routing
algorithms depending on the network size N . A detailed description of the routing
schemes is given in the text. The simulations spanned 10,000 time steps, the
critical packet creation rate µcrit was determined by a binary search algorithm.
Error bars correspond to the variance over the ensemble of network realisations.

different packet creation rates µ the mean of the end-to-end delay 〈te2e〉 is shown.
Data traffic simulation of 5 · 105 time steps were performed for each shortest path
routing scheme depending on the packet creation rate µ. A constant-P reference
network with 100 nodes was employed. The sudden increase in the end-to-end
delay time is a clear sign of µ → µcrit, that the system is about to reach the
supercritical state.

The single-node observables introduced in the previous chapter are not signifi-
cantly changed by the use of the modified routing schemes. Especially the proba-
bility distributions of the interarrival times p(tarrive

i ) and the sending times p(tsend
i )

can still be described by equation (3.15) employing the corresponding mean values
〈tarrive
i 〉 and 〈tsend

i 〉.
Significant deviations are observed only in the probability distribution function

of the buffer queue length p(ni) for the shortest-fifpo scheme compared to the
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Figure 4.2: End-to-end time delay for the shortest path algorithms
The mean of the end-to-end time delay 〈te2e〉 over all packets generated in a
5 · 105 time steps simulation is illustrated for three shortest path routing algo-
rithms depending on the packet creation rate µ. A constant-P reference network
(kconstP = 24) of 100 nodes served as underlying network graph.

theoretical estimate given by the probability density function (3.20). This is shown
in Figure 4.3. The probability distribution of the buffer queue length p(ni) of
the most sensible node in a constant-P reference network is illustrated. The
simulation run spanned 5 · 105 time steps at a packet creation rate µ = 0.01075
which is close to the critical value µcrit

sf = 0.0114 for the shortest-fifpo routing
within this network. The red points correspond to the data from the generic
data traffic simulation whereas the green curve represents the estimate given by
equation (3.20) with the corresponding values µin

i = 1/〈tarrive
i 〉 = 0.099 and µout

i =
1/〈tsend

i 〉 = 0.106 from the same simulation run. It is the special property of
the shortest-fifpo routing to prefer next hop neighbours j ∈ Ni with rather short
buffer queues nj if there exist a degeneracy of shortest paths. These correlations
between the in- and outflux to a node cause the deviations between the generic
data traffic results and the estimate by equation (3.20). This estimate is based on
an independent Poissonian in- and outflux to a node which does not hold for the
shortest-fifpo routing. The probability distribution p(ni) can still be well described

81



4 Distributed routing control

1e-05

0.0001

0.001

0.01

0.1

1

5 10 15 20 25 30 35 40

p(
n i

)

buffer queue length ni

shortest-fifpo routing
theoretical prediction

exponential fit

Figure 4.3: Probability distribution of the buffer queue: shortest-fifpo
The probability distribution of the buffer queue length p(ni) of the most sensible
node in a constant-P reference network is shown. The simulation run covered
5 · 105 time steps with a packet creation rate µ = 0.01075 < µcrit

sf = 0.0114.
The red points correspond to the data from the generic data traffic simulation
whereas the green curve represents the estimate given by equation (3.20) with
µin
i = 0.099 and µout

i = 0.106 obtained in the same simulation run. The blue line
is an exponential fit with (3.13). Parameters are aE = 0.531 and bE = 5.284.

by a exponential probability density function similar to (3.13). A fit (blue line) is
included in Figure 4.3 with aE = 0.531 and bE = 5.284.

In Section 3.1.2 a graph theoretical definition of the node inbetweenness Bnode
i

was supplied. It was defined as the fraction of shortest paths within a network
that pass node i out of all possible shortest paths. Since the fixed-fifpo routing
employed in the previous chapter is exclusively based on shortest paths the node
inbetweenness Bnode

i proved to be a sufficient measure to predict local data traffic
for the nodes of the network. Additionally it is more or less implicitly required
that degenerate shortest paths are taken with fixed probability independent of
any former decisions. This is simply fulfiled by the reduction of the routing tables
F i
f = S = S1 that eliminates all choices in the fixed-fifpo routing. Also in the

random-fifpo routing the requirement is satisfied by the randomness in the choice
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of a degenerate shortest path. The graph theoretical node inbetweenness Bnode
i

should hold as a measure of local traffic density.

As soon as a routing scheme is coupled to an information about the current
network state, the routing decisions do not longer maintain their statistical inde-
pendence. A routing decision at t might depend on earlier routings at (t − ∆t).
The correlations between several path choices make an analytic approach a highly
complex task.

In the shortest-fifpo routing a node tries to avoid next hop nodes with long
buffer queues given that alternative shortest routes exist. This behaviour manip-
ulates the input to a heavily used node, in fact it reduces the inflow of packets.
To quantify that modified behaviour an effective node inbetweenness Beff

i is intro-
duced:

Beff
i =

µin
i

µN
(4.2)

The rate of incoming packets µin
i characterises the average number of packets ar-

riving at the buffer queue of i. Thus Beff
i describes the fraction of totally generated

packets that are forwarded via i. In the fixed-fifpo and the random-fifpo routing
it holds Beff

i
∼= Bnode

i . In Figure 4.4 the maximum inbetweenness (maxi∈N Beff
i ) is

shown for the three so far introduced routing schemes. The simulations of 5 · 105

time steps have been performed on the constant-P reference network. The curve
for the fixed-fifpo routing is constant for different packet creation rates µ in accor-
dance with the previous results. The curve for the shortest-fifpo routing shows a
clear dependence on the packet creation rate µ. For higher packet creation rates
the system tends towards a lower effective inbetweenness. Here the influence of
the incorporation of the network state forces the system to avoid heavily used
nodes, which causes the significant reduction of inflow especially to the most sen-
sible nodes. For smaller packet creation rates µ the most sensible nodes obviously
perform superiorly compared to the alternatives and serve a superproportional
amount of data traffic. The inset in Figure 4.4 shows the variance of all sampled
effective node inbetweenness of the network. The shortest-fifpo routing clearly
tends to a narrower distribution of the effective node inbetweenness for µ→ µcrit

sf ,
whereas the other algorithms are not effected by a higher packet creation rate.
The higher overall variance for the shortest-fifpo routing is attributed to a certain
number of nodes collaboratively managing most of the data traffic. In the fixed-
fifpo and the random-fifpo only one node is heavily used whereas all other nodes
are more or less unburdened.

One may observe the slight dependence of the maximum effective node inbe-
tweenness maxi∈N (Beff

i ) on the packet creation rate µ for the random-fifpo routing
in Figure 4.4. This is caused by an artefact of the fifpo algorithm. For the most
sensible node a higher packet creation results in higher in- and outflux to this
node. So the node might already be involved in a transmission if one of its neigh-
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Figure 4.4: Effective inbetweenness for the shortest path algorithms
The maximum effective node inbetweenness (maxi∈N Beff

i ) defined in (4.2) for the
shortest path algorithms depending on the packet creation rate µ is depicted. The
simulations of 5 · 105 time steps have been performed on the constant-P reference
network. The insets shows the corresponding variance for the nodes in N .

bours tries to forward a packet to it. The fifpo algorithm then proceeds to the
next packet in the buffer queue. Alternative shortest routes that omit the most
sensible node are in that way favored because the probability of finding their
nodes blocked is below the corresponding probability of the most sensible node.
This effect results in a slight reduction of the maximum effective inbetweenness
(maxi∈N Beff

i ) for higher packet creation rates µ.

As already visible by the simple modification from the fixed- to the shortest-
fifpo routing there is a huge potential if information of the network state is used to
construct more sophisticated routing algorithms. A possible approach is given in
the following sections based on self-organisation and an adaptive learning process
employing network state information.
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4.2 Self-organised routing

For the previously introduced routing algorithms a central authority is in charge of
the route discovery that provides all nodes in N with the necessary information.
A decentralised routing protocol performs a route discovery algorithm at each
node independently. In a so called link state algorithm [76] each node maintains
a dynamical map of the complete network. Optimal shortest routes can now be
calculated by the nodes employing a suitable algorithm, usually Dijkstra [57]. A
periodical broadcast of the nodes’ routing information to all other nodes in the
network, called flooding, becomes necessary [77, 78]. As long as the network
topology does not change frequently and the estimate of shortest paths does not
rely on highly volatile network state observables the number of such flooding
events is reasonable. The “open shortest path first” (OSPF) protocol [78], which
is used in the internet, is based on such a link state routing.

A suitable approach to self-organised routing in wireless ad hoc networks should
be able to adapt to local changes in the environment, but also to extensively em-
ploy information about the current network state. This would demand frequent
communication about any changes in the network state to all nodes causing ex-
tensive flooding of the whole network and subsequent recalculations of the routing
tables. Considering the fact that all information exchange has to happen in the
multihop mode and taking into account the possibly high number of changes in
a dynamical network topology an approach based on link state routing does not
seem promising in the very first place.

The main focus is now drawn on a self-organised routing algorithm inspired by
adaptive distance vector routing [75, 79, 24], that is modified for the specific use
in wireless ad hoc communication networks.

For a distance vector routing, also known as Bellman-Ford distance vector rout-
ing [79], each node i ∈ N maintains a routing table Di

f,j where for each final re-
ceiver f an estimate of the cost of sending a packet to f denoted as wi,f |j is stored
given that the packet is send to next hop node j ∈ Ni. These routing tables
are periodically updated by exchanging information between neighbouring nodes.
The “routing information protocol” (RIP), formerly employed in the internet, uses
such a Bellman-Ford distance vector routing algorithm [78, 79].

Littman and Boyen [75] proposed an asynchronous version of the Bellman-
Ford distance vector routing algorithm based on reinforcement learning [80]. The
routing policy tries to send a data packet from node i to a neighbouring node
j ∈ Ni in order to reach the final destination f with minimum associated cost.
The routing table Di

f,j of i can then be improved by employing a direct feedback
if the packet has reached f . Following reinforcement learning [80] the estimate
in Di

f,j can already be updated locally before the packet reaches its final receiver
f . The concept employs the fact that the node j ∈ Ni is nearer to f and thus
has a better estimate of the remaining cost wj,f to transmit the packet. The
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asynchronous distance vector routing proposed by Littman and Boyen [75] is not
based on the periodical exchange of cost estimates but couples them to actual
data transmissions.

The particular organisation of data traffic in a wireless ad hoc communication
network allows an even more elegant solutions. If a data transfer between two
connected nodes i and j takes place both nodes have to block all their outgoing
neighbours {(N out

i \ j) ∪ (N out
j \ i)} due to the medium access control protocol.

This mac-blocking requires the broadcasting of a “Keep-quiet” message that can
be used for the spreading of the routing information.

The routing table Di
f,j of i can be updated if i receives a so called reduced

routing table {minj2∈Nj D
j
f,j2
} from a bidirectional neighbour j ∈ Ni. The broad-

casted reduced routing table of j does only contain the lowest cost estimates for
transmissions from j to any final receiver f ∈ N . The update operation of node
i reads as follows [76]:

Di
f,j ← wi,j + min

j2∈Nj
Dj
f,j2

(4.3)

wi,j is the measure of the cost to send a packet from i to its neighbour j ∈ Ni.
For the self-organised routing protocol studied in this section it is set to wi,j = 1
which represents the hop distance between the two nodes. With this definition
the estimated cost wi,f |j = Di

f,j of a packet delivery from i to f is just the number
of hops from i to f on a given route specified by the next hop node j ∈ Ni. It
has been shown that this process converges in finite time to shortest paths [78].
The full ability of self-organised routing approach will be visible by including
information about the network state in the cost estimates wi,j in the next section.
For demonstrating the basic functionality within this section the distance between
two nodes is the only parameter on which to decide which particular route is taken.

The converged routing tables Di
f,j do not only contain the information about

shortest paths from i to f but they also have information about the length of the
shortest paths from any of the bidirectional neighbours j ∈ Ni to f . Thus a node
now has the ability to not only choose a shortest but also a second shortest path.
This choice is paid respect to by assigning a Boltzmann-like probability [80] to
each of the possible routes represented by all neighbours of i. Trying to send a
packet in the fifpo mode from a node i, node j ∈ Ni is chosen as a next hop with
probability

p(j|i→ f) =
(Di

f,j)
−β

∑
j′∈Ni(D

i
f,j′)

−β . (4.4)

The parameter β acts like an inverse temperature. For high values of β the
probability of choosing other paths than the shortest is significantly reduced. In
the limit of β →∞ the routing scheme can be mapped on the random-fifpo modus
described in the previous section.

As mentioned above within the self-organised routing the routing information
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is coupled to the mac-blocking signal in order to not cause additional commu-
nication. In particular the reduced routing table {minj∈NiD

i
f,j} of the send-

ing/receiving node i is broadcasted with the mac signal. The bidirectional neigh-
bours of the sending and the receiving node do subsequently update their routing
tables according to (4.3).

For the simulation employed to verify the performance of the self-organised
routing all routing tables are initially set to

Di
f,j =





1 (f ∈ Ni)
0 (i = f)
∞ (else)



 . (4.5)

After a sufficient number of updates the routing tables Di
f,j of all nodes i ∈ N

converge towards a fixed configurations strictly representing shortest paths

Di
f,j = wi,j + wj,f = 1 + dj,f (4.6)

where dj,f is the shortest path distance from j to f . At this point further updates
according to (4.3) do not cause changes in the routing tables Di

f,j. This behaviour
was verified in the data traffic simulations. Convenient measures are the number
of end-to-end routes, that have so far not converged to the shortest path σi,f ,
referred to as imperfectness, and the number of changes in the routing tables Di

f,j

per ten time steps. Both observables are shown in Figure 4.5 for networks of size
N = 100 and N = 200 and different packet creation rates µ. The simulations
were performed on networks with constant-P power assignment with kconstP = 24.
As indicated in both graphs, the convergence time for the routing tables to reach
the shortest path representation is shifted to higher time scales for higher values
of the system size N . This is caused by the higher diameter D ∼

√
N , requiring

more propagation steps for the complete distribution of any information through
the network. It is also intuitive that for a given network size N a higher packet
creation rate µ causes a faster convergence of the routing tables due to the fact
that more packets in the network result in more sending events that are themselves
coupled to the broadcasting of the routing information.

Another critical parameter is the inverse temperature β for the Boltzmann-like
probability distribution in equation (4.4). The lower the value of β the higher is
the probability to choose a path that is not the shortest. In the generic data traffic
simulations higher values of β proved to be superior to lower ones (see Figure 4.6).
This might be understood by looking at the final configuration of the routing table
Di
f,j . The values for (minj∈NiD

i
f,j) representing the shortest paths from i to f

and (maxj∈NiD
i
f,j) can only differ by a maximum of 2. This can be easily proved:

The distance from any neighbour j∗ ∈ Ni to any node f can not be larger than
(minj∈NiD

i
f,j + 1) because node i itself represents the next hop of node j∗ to

reach f in (minj∈NiD
i
f,j + 1) hops. Thus, it follows for the reduced routing table
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Figure 4.5: Convergence of the routing tables
The upper graph corresponds to a network with 100 nodes, the lower one has 200
nodes, both are constructed with constant-P power assignment with kconstP = 24.
The inverse temperature is set to β = 100. The imperfectness indicates, how
many end-to-end routes i to f in Di

f,j are not represented by at least one shortest

route σi,f . The insets show at how many positions the routing tables D i
f,j have

been improved in the last ten time steps.
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from node j∗ that (minj2∈Nj∗ D
j∗

f,j2
) ≤ (minj∈NiD

i
f,j + 1) which following equation

(4.3) causes Di
f,j∗ = (minj∈Ni D

i
f,j + 2). This implies that signing a significant

probability to paths with Di
f,j = (minj∈NiD

i
f,j +2) encourages the sending of data

packets to next hop nodes j that might just send the packet back after a couple
of time steps because node i is already the best suitable base for the journey to
f . This effect can only be reduced by higher values of β.

From the perspective to avoid congestion it might still seem reasonable to opt
for intermediate values of the inverse temperature β that avoids overloading of
shortest paths and uses alternative second shortest routes instead. Generic data
traffic simulations disprove that assumption. Self-organised routing schemes with
higher values of β are always superior to lower ones as indicated in Figure 4.6.
The mean of the end-to-end time delay 〈te2e〉 over all packets of a 5 ·105 time steps
simulation is shown depending on the packet creation rate µ. The simulations were
performed on a constant-P reference network. One has to draw the conclusion
that the choice of non-shortest paths does not happen in an intelligent way but
randomly. In most cases the choice of a longer path is not suitable because the
routes show little congestion.

As already mentioned the self-organised routing with an exponent β → ∞ in
(4.4) only discriminates between different routes if they represent shortest paths.
According to (4.4) they are chosen with the same probability. In that respect
the routing decision is identical to the random-fifpo case from the previous sec-
tion. Both routing schemes show the same behaviour under generic data traffic
conditions.

4.3 Self-organised adaptive routing

Employing the self-organised routing introduced in the previous section a node i
does not gather essentially more or better information about the network structure
compared to the centralised shortest path routing approaches presented in section
4.1. Including information about the recent or current dynamical state of the
network seems to be the key element of any advanced routing approach [76, 77, 78].
Only by employing knowledge about highly frequented nodes or areas, travelling
times on certain paths or quality of links the management of an “intelligent”
packet forwarding can be achieved.

Imagine a typical routing decision: A node i ∈ N intends to send a packet
to the final receiver f ∈ {N \ i}. If f is contained in the set of neighbouring
nodes Ni of i the packet will be directly forwarded to f . If f 6∈ Ni, i can send
the packet to any of its neighbouring nodes j ∈ Ni. How should node i decide
where to send the packet? Before answering that question one has to define,
which criteria shall be applied for comparing different possible paths represented
by the next hop nodes j ∈ Ni. Within wireless multihop ad hoc communication
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Figure 4.6: End-to-end time delay for the self-organised routing
The mean of the end-to-end time delay 〈te2e〉 over all packets of a 5 · 105 time
steps simulation is illustrated for different inverse temperatures β depending on
the packet creation rate µ. A constant-P reference network of 100 nodes with
kconstP = 24 served as underlying network graph.

the most important feature seems to be the minimisation of the end-to-end time
delay. Short delay times are essential, especially for voice transmission as in mobile
phones. According to Little’s Law (3.12) the minimisation of the end-to-end time
delay also reduces the number of active packets in a network which in general
leads to systems with a lower risk of congestion.

A promising approach has to obtain a routing policy which balances the minimi-
sation of the number of “hops” a packet will take with the possibility of congestion
along popular routes [76]. Since the buffer queue length ni of a node is a good
measure of “how busy” it is [75, 76], ni is directly incorporated for the cost es-
timation of a communication route. In a small modification of the self-organised
routing scheme the cost estimate wi,j for sending a data packet from node i to its
neighbouring node j ∈ Ni in (4.3) now yields

wi,j = nj ± 1 + 1 . (4.7)

The + sign is used if j acts as receiver in the upcoming communication and the
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− sign if n is the sender. The update operation of the routing tables in (4.3) is
now composed of the buffer queue length of the neighbour j ∈ Ni represented by
(nj±1) in equation (4.7), the hop distance to j represented by the (+1) term in the
same equation and the equivalent best cost estimate of node j for a transmission
to f represented by (minj2∈Nj D

j
f,j2

). The summarised buffer queue length of the
intermediate nodes are used as a measure of how long a communication via a
certain path might take. Despite the use of the first-in-first-possible-out strategy
this assumption seems reasonable since in general a longer buffer queue results in
a longer waiting at the particular node. Coupling the broadcasting of the reduced
routing table {minj2∈Nj D

j
f,j2
} of j and the subsequent update of its neighbours

j2 ∈ Nj with the mac-blocking results in an immediate information of the local
neighbourhood about any changes in the buffers of node j caused by a transmission
event.

The update rule defined in (4.3) modifies the routing tables of the local neigh-
bourhood {Ni∪Nj} for a transmission between i and j but not the routing tables
of further distant nodes. These nodes can only obtain information about more
than one hop away communications if their neighbours broadcast their already
updated reduced routing tables when they are themselves involved in a communi-
cation event. This results in a delay as the update information propagates through
the whole network mac-step for mac-step. An estimate of the time scale of such
a propagation is given in Figure 4.5. For a network without any prior knowl-
edge about possible routes except for the initial configuration (4.5), the time for
the convergence to the shortest path in the self-organised routing scheme can be
approximated depending on packet creation rate µ and system size N . A local
change in the network state is somewhat similar to a new network configuration
all nodes have to learn about. As long as this time range is not significantly larger
than the time scales on which the network experiences tremendous changes in its
load states a routing algorithm based on dynamical observables should provide
sufficient results.

A clear advantage of the self-organised adaptive routing is the coupling of the
broadcasting of the reduced routing table {minj∈NiD

i
f,j} of node i with the mac-

blocking signal that allows all neighbours j ∈ Ni to quickly learn about changes of
i’s buffer queue ni. It is precisely this set of neighbours j ∈ Ni that can themselves
forward own data packets to i. Ensuring that every node j ∈ N has access to
information about its bidirectional neighbours which is provided by the coupling
to the mac signal is a valuable tool especially for the local management of traffic.

Unlike the self-organised routing introduced in the previous section, the self-
organised adaptive routing described above does not result in fixed routing tables
for any node i ∈ N . The self-organised routing converges towards shortest paths
in terms of the hop-metric as indicated in equation (4.6). Because of the inclusion
of the buffer queue content nj via equation (4.7) in the routing tables Di

f,j of
the self-organised adaptive routing scheme such a convergence is not reached.
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Figure 4.7: End-to-end time delay for the self-organised adaptive routing
The mean of the end-to-end time delay 〈te2e〉 is illustrated for different inverse
temperatures β depending on the packet creation rate µ. The average is taken over
all packets of a 5 · 105 time steps simulation on a constant-P reference network.
The inset shows the number of active packets M(t) for the case β = 100 at a
packet creation rate µ = 0.014 depending on time t. The observation that there
is no linear dependence of M(t) on the time step t is a clear sign that the network
is still in the subcritical regime.

Every sending event in the network causes the propagation of the modified buffer
queues which enforces changes in the routing tables of the neighbouring nodes
and subsequently their further surroundings. The fluctuations in the length of the
buffer queues imply a non-steady state for the routing tables of all nodes of the
network.

Mean end-to-end time delay The actual choice of a path for a packet to
be sent from i to f is determined according to the probability for each next hop
node j ∈ Ni given by (4.4). The mean end-to-end time delay 〈te2e〉 of the self-
organised adaptive routing shows a strong dependence on the inverse temperature
β as indicated in Figure 4.7. The simulations of the generic data traffic were
performed on a constant-P reference network. The average of the end-to-end
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time delay was taken over all packets transmitted within the 5 · 105 time steps
of each simulation run. For reference the respective plot of the fixed-fifpo regime
is included in the graph. Two things should be observed: First, higher inverse
temperatures β in equation (4.4) are superior to lower ones. This behaviour is
in accordance with the results from self-organised routing in Section 4.2. High
inverse temperatures β ensure that there exists almost no probability of choosing
another path than the one with the lowest associated cost estimate. Second, the
self-organised adaptive routing with high β causes a significant shift in the critical
packet creation rate µcrit. Although more packets are present in the network, such
a routing scheme can handle packet creation rates up to a factor of around 1.4
compared to the fixed-fifpo case. The inset of Figure 4.7 shows the number of
active packets M(t) for the self-organised adaptive routing with β = 100 at a
packet creation rate µ = 0.014 as the arrow indicates. The observation that there
is no linear dependence of M(t) on the time step t is a clear sign that the network
is still in the subcritical regime.

Interarrival and sending time In order to get an impression about the net-
works behaviour under data traffic governed by self-organised adaptive routing
selected single node observables, already introduced in Section 3.3, have been
studied. Figure 4.8 shows a plot of the probability distribution for the interar-
rival and the sending time for the most sensible node of the constant-P reference
network of 100 nodes. The simulations spanned 5 · 105 time steps and were per-
formed for different subcritical packet creation rates µ. The inverse temperature
was set to β = 100. As already mentioned the graph theoretical inbetweenness
Bnode
i introduced in Section 3.1.2 is not longer suitable to characterise the influx

of packets to the nodes of the network because the particular routing decisions
do not necessarily employ shortest paths. The probability distributions for both
the interarrival times p(tarrive

i ) and the sending times p(tsend
i ) show an exponential

behaviour which can be described as a geometric probability density function

p(t = t∗) = (1− η)t
∗−1η (4.8)

in accordance with the findings for the fixed-fifpo case in section 3.3.1. In complete
analogy the values for η can be obtained from the mean of the interarrival times
η = µin

i = 1/〈tarrive
i 〉 and the mean of the sending times η = µout

i = 1/〈tsend
i 〉. The

corresponding approximations are included in Figure 4.8. Parameters are given
in Table 4.1. Since a graph theoretical description of the mean interarrival time
〈tarrive
i 〉 based on the node inbetweenness Bnode

i is no longer possible neither µin
i

nor µout
i can be expressed analytically.

Compared to Figure 3.8 the corresponding curves in Figure 4.8 show a small
peak for low values of the interarrival times that is especially pronounced for lower
packet creation rates µ. It can be understood in terms of the routing algorithm for
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Figure 4.8: Probability distribution of interarrival- and sending time
The probability distribution for the interarrival (upper graph) and the sending
time (lower graph) for the most sensible node of the constant-P reference network
is depicted. The simulations covered 5 · 105 time steps and were performed for
different subcritical packet creation rates µ, indicated by different colours. The
inverse temperature of the self-organised adaptive routing was set to β = 100. A
fit according to (4.8) is included for each data set.
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networks with few packets. As soon as a node i receives a packet its neighbourhood
gets the corresponding message due to the mac-blocking signal. This effect causes
an update of the routing tables with an increased cost estimate for transfers via i
and so reduces the probability of sending another packet there. After node i itself
could forward the packet it is again a good alternative for packet transfer and
receives a higher probability of gaining new packets. For higher packet creation
rates µ the average number of packets in the network M(t) is higher which makes
routing decisions not too sensitive for single packets events.

µ 〈tarrive
i 〉 〈tsend

i 〉
0.0010 15.616 10.037
0.0011 19.066 15.971
0.0014 25.204 25.192

Table 4.1: Mean interarrival and sending time
Mean values of the interarrival and sending time, 〈tarrive

i 〉 and 〈tsend
i 〉, as used for

the fit in Figure 4.8 for different packet creation rates µ. The node degree of node
i is measured to be ki = 25. Since for µ→ µcrit it competes with all its neighbours
for sending permission it is intuitive that the mean sending time is in the same
range 〈tsend

i 〉 ≈ 25.

Buffer queue length Significant changes can be observed in the probability
distribution for the buffer queue length p(ni) compared to the fixed-fifpo case
studied in Section 3.3.2. For packet creation rates µ closer to µcrit the graphs of
the probability distribution get bell shaped as presented in Figure 4.9. The most
sensible node of the constant-P reference network was observed. The simulations
spanned 5 · 105 time steps. The inverse temperature of the self-organised adaptive
routing was fixed to β = 100. In networks with µ → µcrit the node’s buffer
queue ni always contains a certain number of packets fluctuating around a given
mean 〈ni〉 that shows a clear dependence on µ. This almost stable distribution of
packets is a key stone for the functionality of the routing policy that emerges in
self-organised manner.

Good fits of the experimental data can be obtained by a continuous Gamma-
distribution with scaling parameter b

p(b,k)(x) =
1

Γ(k)bk
xk−1e−

x
b . (4.9)

The inset in Figure 4.9 shows an fit for µ = 0.013. Parameters are k = 10.019
and b = 0.487. For k → 1 the Gamma-function converges towards an exponential

95



4 Distributed routing control

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

p(
n i

)

buffer queue length ni

µ = 0.010
µ = 0.011
µ = 0.012
µ = 0.013
µ = 0.014

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

p(
n i

)

ni

Figure 4.9: Probability distribution of the buffer queue length
The probability distribution of the buffer queue length p(ni) for the most sensible
node of the constant-P reference network is shown. The data traffic simulations
spanned 5 · 105 time steps and were performed for different subcritical packet
creation rates µ, indicated by different colours. The inverse temperature of the
self-organised adaptive routing was set to β = 100. The inset illustrates a fit
with a Gamma-distribution according to (4.9) for µ = 0.013. Parameters are
k = 10.019 and b = 0.487.

probability distribution function which is the continuous analog to the the geo-
metric probability distribution used in equation (3.20) for the description of the
buffer queue lengths in Section 3.3.2. In that respect the exponential behaviour
in the fixed-fifpo case might be a special case of a more general description for the
probability density function of the buffer queue length p(ni).

Single-node temporal correlations The rather narrow interval where the
probability density function of the buffer queue length p(ni) 6= 0 is the key feature
for the understanding of the single-node temporal correlations ri(∆t) as defined in
(3.27) for packet creation rates near the critical value µcrit. Unlike the fixed-fifpo
routing where the probability density function of the buffer queue length p(ni)
is significantly skewed, in the self-organised adaptive routing the values of ni are
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Figure 4.10: Single-node temporal correlations
Single-node temporal correlations ri(∆t) for self-organised adaptive routing are
shown for different packet creation rates. Simulation parameters are identical to
Figures 4.8 and 4.9. The upper graph shows ri(∆t) for i being the most sensible
node of the network with 25 communication neighbours. In contrast ri(∆t) is also
illustrated for a less used node with only 8 neighbours in the lower graph. The
corresponding single-node temporal correlations for these nodes in the fixed-fifpo
case are presented as reference.
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centered around a mean value 〈ni〉, at least for the more sensible nodes as shown in
Figure 4.9. This causes 〈ni(t+∆t)ni(t)〉 ≈ 〈ni(t)〉2 for smaller ∆t. Thus the single-
node temporal correlations are expected to be drastically reduced. The upper
graph of Figure 4.10 verifies that result where the curve for the fixed-fifpo case
near its critical packet creation rate µcrit

ff is shown for reference. The simulations
of 5 · 105 time steps were performed on the constant-P reference network. In the
upper graph the single-node temporal correlations are studied for the same most
sensible node that was observed for the interarrival/sending times and the buffer
queue length in Figures 4.8 and 4.9, respectively. For this node the transition to
the bell-shaped gamma-like density function of the buffer queue length p(ni) is
most pronounced and causes the significantly reduced correlations. In the lower
graph of Figure 4.10 a less frequented node was observed. This node only has
eight communication neighbours compared to 25 for the most sensible node. In
classical shortest path routing this node does handle almost no traffic that does
not originate or terminate at the node itself. Also in the case of higher packet
creation rates µ that might occur in a network governed by the self-organised
adaptive routing this node is not extensively used as an alternative router nor
does its performance be a limiting factor of the network’s overall behaviour. In
that respect the statistical properties of the node are not significantly changed
by the different routing scheme. This can be verified in the corresponding plot
of the single-node temporal correlation where the curves for the packet creation
rate µ = 0.0095 in the fixed-fifpo and the self-organised adaptive routing almost
perfectly match.

Node inbetweenness In extension to Figure 4.4 a more detailed picture is
provided by Figure 4.11 including the corresponding measures of the effective node
inbetweenness for the self-organised adaptive routing (see definition in equation
(4.2)). The generic data traffic simulation covered 5 · 105 time steps and was
based on the constant-P reference network. In the upper graph of Figure 4.11
the maximum value of the effective node inbetweenness (maxi∈N Beff

i ) is plotted
for different packet creation rates µ. Up to around the critical packet creation
rate for the fixed-fifpo routing µcrit

ff the maximum effective node inbetweenness
(maxi∈N Beff

i ) shows a similar behaviour like the shortest-fifpo routing. The more
packets the most sensible node would have to serve the more packets are routed
on alternative routes. For µ > µcrit

ff the maximum effective node inbetweenness
(maxi∈N Beff

i ) increases. It has to be suspected that at that point other nodes than
the most sensible one get near to a congested regime, too, which makes them less
attractive for rerouting. The most sensible node is then again a good alternative
in spite of a possible longer waiting time there. For other network configurations
not just a single peak in the interval µcrit

ff < µ < µcrit
soa between the critical rate

of the fixed-fifpo and the self-organised adaptive routing was observed but two of
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Figure 4.11: Effective inbetweenness for different routing approaches
The maximum (maxi∈N Beff

i ), the mean 〈Beff〉 and the variance vari∈N (Bnode
i )

of the effective node inbetweenness are presented in the three graphs depending
on the packet creation rate µ. The data is obtained from generic data traffic
simulations on a constant-P reference network each covering 5 · 105 time steps.
The red curves corresponds to the fixed-fifpo routing, the green to the random-
fifpo, the blue to the shortest-fifpo and the pink to the self-organised adaptive
routing.
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them. This could be an indication that two nodes play a significant role in the
limitation of the network’s performance.

The middle graph of Figure 4.11 shows the mean of the effective node inbe-
tweenness 〈Beff

i 〉 averaged over all nodes in N . For the shortest path algorithms
the number of hops for each packet is fixed thus determining the total number of
inflows per time step given by

∑
i∈N µ

in
i = µND. It follows

〈Beff
i 〉 =

〈µin
i 〉

µN
=

∑
i∈N µ

in
i

µN2
=
µND

µN2
=
D

N
= const (4.10)

for a given network realisation. This behaviour is verified for the three shortest
path routing schemes as indicated in Figure 4.11. The higher mean for the effective
node inbetweenness 〈Beff

i 〉 of the self-organised adaptive routing is due to the fact
that not only shortest paths in terms of the hop metric are chosen. This causes a
higher number of packet inflows per time step but does not cause a higher mean
end-to-end time delay 〈te2e〉 as seen in Figure 4.7. For packet creation rates near
the critical packet creation rate of the self-organised adaptive routing µ → µcrit

soa

the effective node inbetweenness 〈Beff〉 saturates. This is a possible indicator for
reaching the critical creation rate µcrit

soa since a higher influx of packets to the nodes
N can not be handled anymore.

An analog interpretation to the one given in Section 4.1 holds for the decrease
of vari∈N (Beff

i ) in the lower graph of Figure 4.11. The routing algorithm tends to
a more homogeneous distribution of the packets on all nodes of the network. If
more central nodes get longer buffer queues alternative routes get more and more
likely to be taken.

A pleasant visualisation is provided by Figure 4.12 which is set up in complete
analogy to Figure 3.1. The usual constant-P reference network of 100 nodes with
the constant-P rule (kconstP = 24) is shown. The two figures only differ thus far
that in Figure 3.1 the graph theoretical node inbetweenness Bnode

i from (3.2) is
used for the colouring of the nodes whereas in Figure 4.12 the effective node inbe-
tweenness Beff

i from (4.2) is used for a self-organised adaptive routing. Since the
effective node inbetweenness Beff

i represents the “real” flow of data in the network,
which for the self-organised adaptive routing is significantly different compared to
the fixed-fifpo routing, one gets an impression of “how” data traffic is rerouted.
In Figure 4.12 more nodes have red and blue colour, indicating that they are fre-
quently used. Note that the scale of the node inbetweenness changed compared
to Figure 3.1. Even the most sensible nodes have a smaller inbetweenness than in
the fixed-fifpo case.

Probability distribution of the end-to-end time delay Comparing the self-
organised adaptive routing to the formerly used shortest path routing algorithms
it is worth to have a look on the probability distribution of the end-to-end time
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Figure 4.12: Visualisation of the effective node inbetweenness
The colour of the nodes correspond to the effective node inbetweenness B eff

i . The
network graph of 100 nodes with constant-P power assignment (kconstP = 24) is
the usual constant-P reference network. The effective node inbetweenness was
measured at µ = 0.0095.

delay p(te2e) in Figure 4.13. The simulations on the constant-P reference network
covered 5 ·105 time steps. It is important to make sure that an alternative routing
algorithm also works for lower packet creation rates meaning that one does not
have to pay for a good performance in the high traffic regime with worse conditions
in the low traffic regime. As observed for the mean delay times 〈te2e〉 in Figure 4.7
the self-organised adaptive routing works as well as the other approaches in the
range µ < µcrit

ff . Although small differences in the probability distribution of the
end-to-end time delay p(te2e) at µ = 0.0095 can be seen between the fixed-fifpo
and the self-organised adaptive routing in Figure 4.13 the overall shape of the
curves match quite well. While the fixed-fifpo routing might show a slightly bet-
ter performance towards short end-to-end time delays the self-organised adaptive
routing reduces the probability for finding packets with a very large end-to-end
time delay. For higher packet creation rates µ > µcrit

ff the mean delay times 〈te2e〉 of
the fixed-fifpo routing becomes a linear function of time according to Little’s Law
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Figure 4.13: Probability distribution of the end-to-end time delay
The probability distribution of the end-to-end time delay p(te2e) is presented for
the self-organised adaptive routing for different packet creation rates µ. As ref-
erence the corresponding data set for the fixed-fifpo routing at µ = 0.0095 is in-
cluded. The data is obtained from generic data traffic simulations on the constant-
P reference network each covering 5 · 105 time steps.

(3.12). This causes the probability density function of the end-to-end time delay
p(te2e) to not converge to 0 for te2e → ∞. In this critical regime µcrit

ff < µ < µcrit
soa

the self-organised adaptive routing can still handle the upcoming data traffic al-
though longer end-to-end delay times have to be accepted (see Figures 4.7 and
4.13).

4.4 Self-organised adaptive routing using reinforcement

learning

So far the routing table Di
f,j of node i was updated according to update rule

(4.3) as soon as either wi,j or (minj2∈Nj D
j
f,j2

) was changed and propagated by the
neighbouring node j ∈ Ni. Changes propagated further through a network could
so possibly result in heavily oscillating cost measures in the routing tables Di

f,j.
As proposed by Littman and Boyan [75] a reinforcement learning approach can be
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Figure 4.14: End-to-end time delay for different learning rates
The mean of the end-to-end time delay 〈te2e〉 over all packets of a 5 · 105 time
steps simulation is illustrated for different learning rates ν depending on the packet
creation rate µ. The constant-P reference network served as underlying network
graph. The inset shows the enlarged part of the plot for smaller packet creation
rates µ.

combined with the distance vector routing introduced so far. Instead of employing
the update rule (4.3) an additional learning rate ν ∈ [0, 1] is incorporated. The
modified update rule now reads [24]

Di
f,j ← (1− ν)Di

f,j + ν [wi,j + ( min
j2∈Nj

Dj
f,j2

) ] (4.11)

For ν < 1 a fraction of the old cost estimate is kept as a part of the new estimate.
This modification includes a memory effect of formerly used routes that are only
updated if significant changes in the network state have occurred. This approach
is known as Q-routing [81].

The simple extension proved to cause a small but clearly measurable effect
towards a further improvement in network performance. As indicated in Figure
4.14 the self-organised adaptive routing was performed for different learning rates
ν employing the update rule (4.11) instead of (4.3). For values of ν decreasing
from 1.0 to about 0.1 − 0.4 the critical packet creation rate is pushed to slightly
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larger values thus extending the subcritical regime. For v < 0.1 the effect reverses.
It is intuitive that at a certain small learning rate the update rule collapses only
keeping the once obtained values for the cost estimates in Di

f,j . This behaviour can
be verified observing the “update” measure introduced in Section 4.2. After an
initial route discovery has been performed the system sticks to the once acquired
cost estimates. Further changes in the network state do not result in updates of
the routing tables Di

f,j .

The implementation of the modified update rule (4.11) with the learning rate
ν in the generic data traffic simulation is based on integer value representation in
the routing tables Di

f,j which makes rounding operations in (4.11) necessary. The
integer based implementation is retained in order to not slow down the already
very time intensive simulations.

Further modifications of the update operations given by (4.7) and (4.11) to
maintain the routing tables Di

f,j can be thought of. So far the incorporation of
the buffer queue length nj in (4.7) is only a crude measure of the time a data
packet has to spend at a possible next hop node j. A multiplicative parameter de-
pending on the average sending time 〈tsendj 〉 might prove useful to better evaluate
the consequences of a buffer queue of length nj. Also a reasonable treatment of
packet generation and destruction could be included. So far no particular message
is broadcasted if packets are generated or destroyed at a certain node accounting
for the different influences of such events. By referring to the primary goal of
this chapter – to develop a suitable routing algorithm that encompasses the fea-
tures of self-organisation, local independence and exploitation of load dependent
observables – a further, mostly numerical study of details will now be omitted.

4.5 Summary

As indicated in the very beginning of this chapter the major aim was not to provide
a detailed routing protocol for communication in wireless ad hoc networks but to
show the general ability of a self-organised routing algorithm to cope with the
limitations of this particular network.

In a detailed study the special features of routing algorithms based on shortest
paths have been reviewed. By extending the routing policy with a load depen-
dent element in case of degenerate shortest paths a first promising hint for the
predominance of adaptive routing algorithms could be identified.

By a sensible modification of an asynchronous distance vector routing first pro-
posed by Littman and Boyen [75] a routing algorithm was constructed especially
suited for routing in wireless ad hoc networks. This self-organised adaptive routing
outperforms the previous routing schemes based on shortest paths.

It should be explicitly remarked that further detailed studies of the particular
routing algorithm have to be carried out. The statistical properties of the routing
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tables and the temporal and spatial distribution of the routing information in the
network need a detailed review. As a typical measure relaxation times are often
used in statistical physics. Additionally the performance of the routing algorithm
for different spatial distribution of nodes, other power assignments, specific user
behaviours and on/off switches of nodes are worth studying.
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The importance of technological, biological and social networks has become more
and more obvious in the last years [14, 15, 16]. These networks are the key
elements of complex dynamical processes. Local interactions of the constituents
contribute to the overall behaviour and often result in self-organising systems
[7, 27, 54, 82]. Methods from modern statistical physics are widely applicable
in the analysis of the underlying processes. Much of the growing insight in the
self-organised control of complex networked systems is derived from the current
research to understand genetic and metabolic networks as they occur in cells and
higher organisms. But also within continuously growing technical systems similar
questions arise, although the approaches might start from an opposite position.
Whereas in most biological systems one tries to identify the interactions that lead
to robustness and self-organisation, in a technological system one has to set up
the rules in order to reach a desired state. Still the central problems remain the
same: How can the local interactions between the networked constituents result
in an overall optimised system?

Wireless multihop ad hoc networks represent an example of a complex tech-
nological system that calls for the integration of self-organising routines. High
priority is given to the setup of distributed interactions rules that result in the
emergence of efficient dynamical networked systems serving the needs of wireless
communication. Especially for these particular communication networks different
issues have to be addressed like connectivity, throughput, routing efficency, robust-
ness, power consumption, quality of service, that, although viewed independently,
make up the overall performance by their common interplay.

Connectivity is an essential prerequisite for a communication network. This
issue was addressed in Chapter 2 where by introducing the minimum node degree
rule a first step towards a distributed set of rules has been presented. The regu-
larly used constant-P power assignment has serious disadvantages. Since this rule
is by definition global it is not suited for a distributed approach. Furthermore
it can not compensate local inhomogeneities in the density of nodes. In contrast
the minimum node degree rule is solely based on local observables namely the
number of direct communication neighbours of a node. By enforcing a minimum
number of such neighbours each node itself adjusts its transmission power ac-
cording to the local environment an thus counterbalances spatial inhomogeneities.
The algorithm proved to provide efficiently connected networks with reduced to-
tal transmission power compared to the constant-P power assignment. In that
respect the minimum node degree rule is an example for a distributed algorithm
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that leads towards a self-organised connected network structure.
In a next step this underlying network structure is used for the transfer of data.

These dynamical processes are closely connected to the particular network topol-
ogy. By use of an appropriate generic data traffic model in Chapter 3 important
characteristics of the dynamical processes have been studied. It could be shown
that the throughput, which characterises the overall capacity of a communication
network for data transfer, is limited by certain heavily used nodes. A detailed
study of so called single-node observables proved highly valuable for the under-
standing of the influence of these nodes on the overall system dynamics. Sufficient
analytical expressions could be derived for the description of the buffer queue con-
tent and the single-node temporal correlations. An estimate of the average sending
time of a node allows evaluations about its criticality and thus about the overall
limitations on the networked system.

The transfer of a data packet through a communication network on a specified
path, called routing, is a highly complex problem. On the one hand one requires
short transfer times, on the other hand one has to take care to keep the system
in a non-congested state. On top of it local rules are required to manage all
these tasks. Based on the idea of adaptive distance vector routing a distributed
routing approach especially suited for ad hoc networks has been introduced in
Chapter 4. Based on a local cost estimate each node does by itself decide where
to forward a certain data packet. Since the estimates are especially good for
the local surrounding the approach managed to distribute data traffic such that
heavily used nodes are widely avoided. By employing this strategy the subcritical
regime of data traffic could be remarkably extended. The particular set of rules
independently discovers and maintains efficient routes through the network by
employing load dependent observables. In that respect the self-organised adaptive
routing is a first step towards a distributed routing scheme that serves the needs
of wireless ad hoc communication.

Continuing the line of this work the next questions have to address the complex
interplay between routing and topology. It seems certain that different network
topologies require different routing strategies. At that point it is legitimate to ask
what combination of both leads to the best overall performance. It is so far not
clear to what extend a sophisticated routing algorithm can counterbalance a less
than optimal topology.

Examples of highly complex, self-organised systems are manyfold in nature.
Most of them are based on rather simple interactions rules. The investigation of
these systems and the understanding of the complex processes that lead to self-
organisation are a major challenge of current research. The profit is not only the
academic gain of knowledge but also the possible adaption in new “man-made”
systems of which wireless mobile ad hoc networks are just one example.
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Ingmar Glauche Dresden, 23. Oktober 2003


